skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning

Journal Article · · Cardiovascular and Interventional Radiology

PurposeTo create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated.Materials and MethodsIce ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1–6 cryoablation probes and 1–2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements were obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions.ResultsAverage absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm.ConclusionCryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.

OSTI ID:
22645217
Journal Information:
Cardiovascular and Interventional Radiology, Vol. 40, Issue 5; Other Information: Copyright (c) 2017 Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE); http://www.springer-ny.com; Country of input: International Atomic Energy Agency (IAEA); ISSN 0174-1551
Country of Publication:
United States
Language:
English