skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy

Abstract

Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed on the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases.more » Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.« less

Authors:
 [1];  [2];  [2];  [1]; ;  [3];  [1];  [4]; ;  [3];  [2];  [1];  [4];
  1. Paul Scherrer Institut, Villigen PSI (Switzerland)
  2. (Denmark)
  3. Department of Oncology, Rigshospitalet, Copenhagen (Denmark)
  4. (Switzerland)
Publication Date:
OSTI Identifier:
22642364
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTERIZED TOMOGRAPHY; LUNGS; NEOPLASMS; PATIENTS; PLANNING; PROTON BEAMS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; SIMULATION; SPINAL CORD

Citation Formats

Dueck, J, Department of Oncology, Rigshospitalet, Copenhagen, Niels Bohr Institute, University of Copenhagen, Copenhagen, Perrin, R, Persson, G F, Engelholm, S A, Lomax, A, Department of Physics, ETH, Zürich, Josipovic, M, Rosenschöld, AF, Niels Bohr Institute, University of Copenhagen, Copenhagen, Weber, D C, University of Zürich, Zürich, and Munck, P. SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4956259.
Dueck, J, Department of Oncology, Rigshospitalet, Copenhagen, Niels Bohr Institute, University of Copenhagen, Copenhagen, Perrin, R, Persson, G F, Engelholm, S A, Lomax, A, Department of Physics, ETH, Zürich, Josipovic, M, Rosenschöld, AF, Niels Bohr Institute, University of Copenhagen, Copenhagen, Weber, D C, University of Zürich, Zürich, & Munck, P. SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy. United States. doi:10.1118/1.4956259.
Dueck, J, Department of Oncology, Rigshospitalet, Copenhagen, Niels Bohr Institute, University of Copenhagen, Copenhagen, Perrin, R, Persson, G F, Engelholm, S A, Lomax, A, Department of Physics, ETH, Zürich, Josipovic, M, Rosenschöld, AF, Niels Bohr Institute, University of Copenhagen, Copenhagen, Weber, D C, University of Zürich, Zürich, and Munck, P. 2016. "SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy". United States. doi:10.1118/1.4956259.
@article{osti_22642364,
title = {SU-F-T-123: The Simulated Effect of the Breath-Hold Reproducibility Treating Locally-Advanced Lung Cancer with Pencil Beam Scanned Proton Therapy},
author = {Dueck, J and Department of Oncology, Rigshospitalet, Copenhagen and Niels Bohr Institute, University of Copenhagen, Copenhagen and Perrin, R and Persson, G F and Engelholm, S A and Lomax, A and Department of Physics, ETH, Zürich and Josipovic, M and Rosenschöld, AF and Niels Bohr Institute, University of Copenhagen, Copenhagen and Weber, D C and University of Zürich, Zürich and Munck, P},
abstractNote = {Purpose: The breath-hold (BH) technique has been suggested to mitigate motion and reduce target coverage degradation due to motion effects. The aim of this study was to investigate the effect of inter-BH residual motion on the dose distribution for pencil beam scanned (PBS) proton therapy of locally-advanced lung cancer patients. Methods: A dataset of visually-guided BH CT scans was acquired (10 scans per patient) taken from five lung cancer patients: three intra-fractionally repeated CT scans on treatment days 2,16 and 31, in addition to the day 0 planning CT scan. Three field intensity-modulated proton therapy (IMPT) plans were constructed on the planning CT scan. Dose delivery on fraction 2, 16 and 31 were simulated on the three consecutive CT scans, assuming BH duration of 20s and soft tissue match. The dose was accumulated in the planning CT using deformable image registration, and scaled to simulate the full treatment of 66Gy(RBE) in 33 fractions. Results: The mean dose to the lungs and heart, and maximum dose to the spinal cord and esophagus were within 1% of the planned dose. The CTV V95% decreased and the inhomogeneity (D5%–D95%) increased on average 4.1% (0.4–12.2%) and 5.8% (2.2–13.4%), respectively, over the five patient cases. Conclusion: The results showed that the BH technique seems to spare the OARs in spite of inter-BH residual motion. However, small degradation of target coverage occurred for all patients, with 3/5 patients having a decrease in V95% ≤1%. For the remaining two patients, where V95% decreased up to 12%, the cause could be related to treatment related anatomical changes and, as in photon therapy, plan adaptation may be necessary to ensure target coverage. This study showed that BH could be a potential treatment option to reliably mitigate motion for the treatment of locally-advanced lung cancer using PBS proton therapy.},
doi = {10.1118/1.4956259},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) andmore » 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V{sub 95%} (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V{sub 95%} was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V{sub 95%} (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V{sub 95%} are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.« less
  • Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa woodmore » and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.« less
  • Purpose: Deep inspiration breath-hold techniques (DIBH) have been shown to carry significant dosimetric advantages in conventional radiotherapy of left-sided breast cancer. The purpose of this study is to evaluate the use of DIBH techniques for post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Method: Ten PMRT patients, with or without breast implant, underwent two helical CT scans: one with free breathing and the other with deep inspiration breath-hold. A prescription of 50.4 Gy(RBE) to the whole chest wall and lymphatics (axillary, supraclavicular, and intramammary nodes) was considered. PBS plans were generated for each patient’s CT scan using Astroid,more » an in-house treatment planning system, with the institution conventional clinical PMRT parameters; that is, using a single en-face field with a spot size varying from 8 mm to 14 mm as a function of energy. Similar optimization parameters were used in both plans in order to ensure appropriate comparison. Results: Regardless of the technique (free breathing or DIBH), the generated plans were well within clinical acceptability. DIBH allowed for higher target coverage with better sparing of the cardiac structures. The lung doses were also slightly improved. While the use of DIBH techniques might be of interest, it is technically challenging as it would require a fast PBS delivery, as well as the synchronization of the beam delivery with a gating system, both of which are not currently available at the institution. Conclusion: DIBH techniques display some dosimetric advantages over free breathing treatment for PBS PMRT patients, which warrants further investigation. Plans will also be generated with smaller spot sizes (2.5 mm to 5.5 mm and 5 mm to 9 mm), corresponding to new generation machines, in order to further quantify the dosimetric advantages of DIBH as a function of spot size.« less
  • Purpose: Voluntary deep inhalation breath hold (VDIBH) reduces heart dose during left breast irradiation. We present results of the first study performed to quantify reproducibility of breath hold using bony anatomy, heart position, and heart dose for VDIBH patients at treatment table. Methods and Materials: Data from 10 left breast cancer patients undergoing VDIBH whole-breast irradiation were analyzed. Two computed tomography (CT) scans, free breathing (FB) and VDIBH, were acquired to compare dose to critical structures. Pretreatment weekly kV orthogonal images and tangential ports were acquired. The displacement difference from spinal cord to sternum across the isocenter between coregistered planningmore » Digitally Reconstructed Radiographs (DRRs) and kV imaging of bony thorax is a measure of breath hold reproducibility. The difference between bony coregistration and heart coregistration was the measured heart shift if the patient is aligned to bony anatomy. Results: Percentage of dose reductions from FB to VDIBH: mean heart dose (48%, SD 19%, p = 0.002), mean LAD dose (43%, SD 19%, p = 0.008), and maximum left anterior descending (LAD) dose (60%, SD 22%, p = 0.008). Average breath hold reproducibility using bony anatomy across the isocenter along the anteroposterior (AP) plane from planning to treatment is 1 (range, 0-3; SD, 1) mm. Average heart shifts with respect to bony anatomy between different breath holds are 2 {+-} 3 mm inferior, 1 {+-} 2 mm right, and 1 {+-} 3 mm posterior. Percentage dose changes from planning to delivery: mean heart dose (7%, SD 6%); mean LAD dose, ((9%, SD 7%)S, and maximum LAD dose, (11%, SD 11%) SD 11%, p = 0.008). Conclusion: We observed excellent three-dimensional bony registration between planning and pretreatment imaging. Reduced delivered dose to heart and LAD is maintained throughout VDIBH treatment.« less
  • Purpose: In the light of tumor regression and normal tissue changes, dose distributions can deviate undesirably from what was planned. As a consequence, replanning is sometimes necessary during treatment to ensure continued tumor coverage or to avoid overdosing organs at risk (OARs). Proton plans are generally thought to be less robust than photon plans because of the proton beam’s higher sensitivity to changes in tissue composition, suggesting also a higher likely replanning rate due to tumor regression. The purpose of this study is to compare dosimetric deviations between forward-calculated double scattering (DS) proton plans with IMRT plans upon tumor regression,more » and assesses their impact on clinical replanning decisions. Methods: Ten consecutive locally advanced NSCLC patients whose tumors shrank > 50% in volume and who received four or more CT scans during radiotherapy were analyzed. All the patients received proton radiotherapy (6660 cGy, 180 cGy/fx). Dosimetric robustness during therapy was characterized by changes in the planning objective metrics as well as by point-by-point root-mean-squared differences for the entire PTV, ITV, and OARs (heart, cord, esophagus, brachial plexus and lungs) DVHs. Results: Sixty-four pairs of DVHs were reviewed by three clinicians, who requested a replanning rate of 16.7% and 18.6% for DS and IMRT plans, respectively, with a high agreement between providers. Robustness of clinical indicators was found to depend on the beam orientation and dose level on the DVH curve. Proton dose increased most in OARs distal to the PTV along the beam path, but these changes were primarily in the mid to low dose levels. In contrast, the variation in IMRT plans occurred primarily in the high dose region. Conclusion: Robustness of clinical indicators depends where on the DVH curves comparisons are made. Similar replanning rates were observed for DS and IMRT plans upon large tumor regression.« less