skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-48: Clinical Implementation of Brachytherapy Planning System for COMS Eye Plaques

Abstract

Purpose: To commission the Brachytherapy Planning (BP) system (Varian, Palo Alto, CA) for the Collaborative Ocular Melanoma Study (COMS) eye plaques by evaluating dose differences against original plans from Nucletron Planning System (NPS). Methods: NPS system is the primary planning software for COMS-plaques at our facility; however, Brachytherapy Planning 11.0.47 (Varian Medical Systems) is used for secondary check and for seed placement configurations not originally commissioned. Dose comparisons of BP and NPS plans were performed for prescription of 8500 cGy at 5 mm depth and doses to normal structures: opposite retina, inner sclera, macula, optic disk and lens. Plans were calculated for Iodine-125 seeds (OncoSeeds, Model 6711) using COMS-plaques of 10, 12, 14, 16, 18 and 20 mm diameters. An in-house program based on inverse-square was utilized to calculate point doses for comparison as well. Results: The highest dose difference between BP and NPS was 3.7% for the prescription point for all plaques. Doses for BP were higher than doses reported by NPS for all points. The largest percent differences for apex, opposite retina, inner sclera, macula, optic disk, and lens were 3.2%, 0.9%, 13.5%, 20.5%, 15.7% and 2.2%, respectively. The dose calculated by the in-house program was 1.3% highermore » at the prescription point, and were as high as 42.1%, for points away from the plaque (i.e. opposite retina) when compared to NPS. Conclusion: Doses to the tumor, lens, retina, and optic nerve are paramount for a successful treatment and vision preservation. Both systems are based on TG-43 calculations and assume water medium tissue homogeneity (ρe=1, water medium). Variations seen may result from the different task group versions and/or mathematical algorithms of the software. BP was commissioned to serve as a backup system and it also enables dose calculation in cases where seeds don’t follow conventional placement configuration.« less

Authors:
; ; ;  [1]
  1. University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)
Publication Date:
OSTI Identifier:
22642297
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; CRYSTALLINE LENS; IODINE 125; MELANOMAS; PLANNING; RADIATION DOSES; RADIATION SOURCE IMPLANTS; RETINA

Citation Formats

Ferreira, C, Islam, M, Ahmad, S, and De La Fuente Herman, T. SU-F-T-48: Clinical Implementation of Brachytherapy Planning System for COMS Eye Plaques. United States: N. p., 2016. Web. doi:10.1118/1.4956183.
Ferreira, C, Islam, M, Ahmad, S, & De La Fuente Herman, T. SU-F-T-48: Clinical Implementation of Brachytherapy Planning System for COMS Eye Plaques. United States. doi:10.1118/1.4956183.
Ferreira, C, Islam, M, Ahmad, S, and De La Fuente Herman, T. Wed . "SU-F-T-48: Clinical Implementation of Brachytherapy Planning System for COMS Eye Plaques". United States. doi:10.1118/1.4956183.
@article{osti_22642297,
title = {SU-F-T-48: Clinical Implementation of Brachytherapy Planning System for COMS Eye Plaques},
author = {Ferreira, C and Islam, M and Ahmad, S and De La Fuente Herman, T},
abstractNote = {Purpose: To commission the Brachytherapy Planning (BP) system (Varian, Palo Alto, CA) for the Collaborative Ocular Melanoma Study (COMS) eye plaques by evaluating dose differences against original plans from Nucletron Planning System (NPS). Methods: NPS system is the primary planning software for COMS-plaques at our facility; however, Brachytherapy Planning 11.0.47 (Varian Medical Systems) is used for secondary check and for seed placement configurations not originally commissioned. Dose comparisons of BP and NPS plans were performed for prescription of 8500 cGy at 5 mm depth and doses to normal structures: opposite retina, inner sclera, macula, optic disk and lens. Plans were calculated for Iodine-125 seeds (OncoSeeds, Model 6711) using COMS-plaques of 10, 12, 14, 16, 18 and 20 mm diameters. An in-house program based on inverse-square was utilized to calculate point doses for comparison as well. Results: The highest dose difference between BP and NPS was 3.7% for the prescription point for all plaques. Doses for BP were higher than doses reported by NPS for all points. The largest percent differences for apex, opposite retina, inner sclera, macula, optic disk, and lens were 3.2%, 0.9%, 13.5%, 20.5%, 15.7% and 2.2%, respectively. The dose calculated by the in-house program was 1.3% higher at the prescription point, and were as high as 42.1%, for points away from the plaque (i.e. opposite retina) when compared to NPS. Conclusion: Doses to the tumor, lens, retina, and optic nerve are paramount for a successful treatment and vision preservation. Both systems are based on TG-43 calculations and assume water medium tissue homogeneity (ρe=1, water medium). Variations seen may result from the different task group versions and/or mathematical algorithms of the software. BP was commissioned to serve as a backup system and it also enables dose calculation in cases where seeds don’t follow conventional placement configuration.},
doi = {10.1118/1.4956183},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: A recent reanalysis of the Collaborative Ocular Melanoma Study (COMS) medium tumor trial concluded that incorporating factors to account for anisotropy, line source approximation, the gold plaque, and attenuation in the Silastic seed carrier into the dose calculations resulted in a significant and consistent reduction of calculated doses to structures of interest within the eye. The authors concluded that future eye plaque dosimetry should be 'performed using the most up-to-date parameters available.' The reason these factors are important is attributable to the low energy {sup 125}I radiation (approximately 28 keV) that is primarily absorbed by the photoelectric process. Photoelectricmore » absorption is quite dependent on the atomic composition of the absorbing material. Being 40% silicon by weight, the effective atomic number of Silastic is significantly greater than that of water. Although the AAPM TG43 brachytherapy formalism inherently addresses the issues of source anisotropy and geometry, its parameter that accounts for scatter and attenuation, the radial dose function g(r), assumes that the source is immersed in infinite homogeneous water. In this work, factors are proposed for {sup 125}I that correct for attenuation in the Silastic carrier and scatter deficits resulting from the gold plaque and nearby air. The implications of using {sup 103}Pd seeds in COMS plaques are also discussed. Methods and materials: An existing TG43-based ophthalmic plaque planning system was modified to incorporate additional scatter and attenuation correction factors that better account for the path length of primary radiation in the Silastic seed carrier and the distance between the dose calculation point and the eye-air interface. Results: Compared with homogeneous water, the dose-modifying effects of the Silastic and gold are greatest near the plaque surface and immediately adjacent to the plaque, while being least near the center of the eye. The calculated dose distribution surrounding a single {sup 125}I seed centered in a COMS 20 mm plaque was found to be consistent with previously published examples that used thermoluminescent dosimetry measurements and Monte Carlo methods. For fully loaded 12 and 20 mm plaques, calculated dose to critical ocular structures ranged from 16%-50% less than would have been reported using the standard COMS dose calculation protocol. Conclusions: Treatment planning for COMS eye plaques that accurately accounts for the presence of the gold, Silastic and extraocular air is both possible and practical.« less
  • Purpose: This study investigates the effect of eye size and eccentricity on doses to critical tissues by simulating doses in the Plaque Simulator (v. 6.3.1) software. Present OHSU plaque brachytherapy treatment focuses on delivering radiation to the tumor measured with ocular ultrasound plus a small margin and assumes the orbit has the dimensions of a “standard eye.” Accurately modeling the dimensions of the orbit requires a high resolution ocular CT. This study quantifies how standard differences in equatorial diameters and eccentricity affect calculated doses to critical structures in order to query the justification of the additional CT scan to themore » treatment planning process. Methods: Tumors of 10 mm × 10 mm × 5 mm were modeled at the 12:00:00 hour with a latitude of 45 degrees. Right eyes were modeled at a number of equatorial diameters from 17.5 to 28 mm for each of the standard non-notched COMS plaques with silastic inserts. The COMS plaques were fully loaded with uniform activity, centered on the tumor, and prescribed to a common tumor dose (85 Gy/100 hours). Variations in the calculated doses to normal structures were examined to see if the changes were significant. Results: The calculated dose to normal structures show a marked dependence on eye geometry. This is exemplified by fovea dose which more than doubled in the smaller eyes and nearly halved in the larger model. Additional significant dependence was found in plaque size on the calculated dose in spite of all plaques giving the same dose to the prescription point. Conclusion: The variation in dose with eye dimension fully justifies the addition of a high resolution ocular CT to the planning technique. Additional attention must be made to plaque size beyond simply covering the tumor when considering normal tissue dose.« less
  • Purpose: To commission the Monaco Treatment Planning System for the Novalis Tx machine. Methods: The commissioning of Monte-Carlo (MC), Collapsed Cone (CC) and electron Monte-Carlo (eMC) beam models was performed through a series of measurements and calculations in medium and in water. In medium measurements relied Octavius 4D QA system with the 1000 SRS detector array for field sizes less than 4 cm × 4 cm and the 1500 detector array for larger field sizes. Heterogeneity corrections were validated using a custom built phantom. Prior to clinical implementation, an end to end testing of a Prostate and H&N VMAT plansmore » was performed. Results: Using a 0.5% uncertainty and 2 mm grid sizes, Tables I and II summarize the MC validation at 6 MV and 18 MV in both medium and water. Tables III and IV show similar comparisons for CC. Using the custom heterogeneity phantom setup of Figure 1 and IGRT guidance summarized in Figure 2, Table V lists the percent pass rate for a 2%, 2 mm gamma criteria at 6 and 18 MV for both MC and CC. The relationship between MC calculations settings of uncertainty and grid size and the gamma passing rate for a prostate and H&N case is shown in Table VI. Table VII lists the results of the eMC calculations compared to measured data for clinically available applicators and Table VIII for small field cutouts. Conclusion: MU calculations using MC are highly sensitive to uncertainty and grid size settings. The difference can be of the order of several per cents. MC is superior to CC for small fields and when using heterogeneity corrections, regardless of field size, making it more suitable for SRS, SBRT and VMAT deliveries. eMC showed good agreement with measurements down to 2 cm − 2 cm field size.« less
  • Purpose: To compare dosimetrically three plan calculation systems (Plato, Varian Brachytherapy, and in-house-made Excel) available for I-125 COMS eye plaque treatment with measurement. Methods: All systems assume homogeneous media and calculations are based on a three-dimensional Cartesian coordinates, Plato and Brachytherapy Planning are based on AAPM TG-43 and the in-house Excel program only on inverse square corrections. Doses at specific depths were measured with EBT3 Gafchromic film from a fully loaded and a partially loaded 16 mm plaque (13 and 8 seeds respectively, I-125, model 6711 GE, Oncura). Measurements took place in a water tank, utilizing solid water blocks andmore » a 3D-printed plaque holder. Taking advantage that gafchromic film has low energy dependence, a dose step wedge was delivered with 6 MV photon beam from a Varian 2100 EX linac for calibration. The gray-scale to dose in cGy was obtained with an Epson Expression 10000 XL scanner in the green channel. Treatment plans were generated for doses of 2200 cGy to a depth of 7 mm, and measurements were taken on a sagittal plane. Results: The calculated dose at the prescription point was 2242, 2344, and 2211 cGy with Excel, Brachyvision and Plato respectively for a fully loaded plaque, for the partially loaded plaque the doses were 2266, 2477, and 2193 cGy respectively. At 5 mm depth the doses for Brachyvision and Plato were comparable (3399 and 3267 cGy respectively), however, the measured dose in film was 3180 cGy which was lower by as much as 6.4% in the fully loaded plaque and 7.6% in the partially loaded plaque. Conclusion: Careful methodology and calibration are essential when measuring doses at specific depth due to the sensitivity and rapid dose fall off of I-125.« less
  • Purpose: To investigate the effect of plaque design and radionuclides on eye plaque dosimetry. Methods: The Monte Carlo N-particle Code version 6 (MCNP6) was used for radiation transport simulations. The 14 mm and 16 mm diameter COMS plaques and the model EP917 plaque were simulated using brachytherapy seeds containing I-125, Pd-103, and Cs-131 radionuclides. The origin was placed at the scleral inner surface. The central axis (CAX) doses of both COMS plaques at −1 mm, 0 mm, 1 mm, 2 mm, 5 mm, 10 mm, 15 mm, 20 mm, and 22.6 mm were compared to the model EP917 plaque. Dosemore » volume histograms (DVHs) were also created for both COMS plaques for the tumor and outer sclera then compared to results for the model EP917 plaque. Results: For all radionuclides, the EP917 plaque delivered higher dose (max 343%) compared to the COMS plaques, except for the 14 mm COMS plaque with Cs-131 at 1 mm and 2 mm depths from outer sclera surface. This could be due to source design. For all radionuclides, the 14 mm COMS plaque delivered higher doses compared to the 16 mm COMS plaque for the depths up to 5 mm. Dose differences were not significant beyond depths of 10 mm due to ocular lateral scatter for the different plaque designs. Tumor DVHs for the 16 mm COMS plaque with Cs-131 provided better dose homogeneity and conformity compared to other COMS plaques with I-125 and Pd-103. Using Pd-103, DVHs for the 16 mm COMS plaque delivered less dose to outer sclera compared to other plaques. Conclusion: This study identified improved tumor homogeneity upon considering radionuclides and plaque designs, and found that scleral dose with the model EP917 plaque was higher than for the 16 mm COMS plaque for all the radionuclides studied.« less