skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy

Abstract

Purpose: Cone-beam CT (CBCT) imaging may enable image- and dose-guided proton therapy, but is challenged by image artefacts. The aim of this study was to demonstrate the general applicability of a previously developed a priori scatter correction algorithm to allow CBCT-based proton dose calculations. Methods: The a priori scatter correction algorithm used a plan CT (pCT) and raw cone-beam projections acquired with the Varian On-Board Imager. The projections were initially corrected for bow-tie filtering and beam hardening and subsequently reconstructed using the Feldkamp-Davis-Kress algorithm (rawCBCT). The rawCBCTs were intensity normalised before a rigid and deformable registration were applied on the pCTs to the rawCBCTs. The resulting images were forward projected onto the same angles as the raw CB projections. The two projections were subtracted from each other, Gaussian and median filtered, and then subtracted from the raw projections and finally reconstructed to the scatter-corrected CBCTs. For evaluation, water equivalent path length (WEPL) maps (from anterior to posterior) were calculated on different reconstructions of three data sets (CB projections and pCT) of three parts of an Alderson phantom. Finally, single beam spot scanning proton plans (0–360 deg gantry angle in steps of 5 deg; using PyTRiP) treating a 5 cm centralmore » spherical target in the pCT were re-calculated on scatter-corrected CBCTs with identical targets. Results: The scatter-corrected CBCTs resulted in sub-mm mean WEPL differences relative to the rigid registration of the pCT for all three data sets. These differences were considerably smaller than what was achieved with the regular Varian CBCT reconstruction algorithm (1–9 mm mean WEPL differences). Target coverage in the re-calculated plans was generally improved using the scatter-corrected CBCTs compared to the Varian CBCT reconstruction. Conclusion: We have demonstrated the general applicability of a priori CBCT scatter correction, potentially opening for CBCT-based image/dose-guided proton therapy, including adaptive strategies. Research agreement with Varian Medical Systems, not connected to the present project.« less

Authors:
; ; ; ;  [1]; ;  [2]
  1. Dept of Medical Physics, Aarhus University Hospital, Aarhus (Denmark)
  2. Massachusetts General Hospital, Boston, MA (United States)
Publication Date:
OSTI Identifier:
22634794
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; CALCULATION METHODS; COMPUTERIZED TOMOGRAPHY; CORRECTIONS; IMAGES; PHANTOMS; PROTON BEAMS; RADIATION DOSES; RADIOTHERAPY

Citation Formats

Andersen, A, Casares-Magaz, O, Elstroem, U, Petersen, J, Muren, L, Park, Y, and Winey, B. SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4956106.
Andersen, A, Casares-Magaz, O, Elstroem, U, Petersen, J, Muren, L, Park, Y, & Winey, B. SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy. United States. doi:10.1118/1.4956106.
Andersen, A, Casares-Magaz, O, Elstroem, U, Petersen, J, Muren, L, Park, Y, and Winey, B. 2016. "SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy". United States. doi:10.1118/1.4956106.
@article{osti_22634794,
title = {SU-F-J-198: A Cross-Platform Adaptation of An a Priori Scatter Correction Algorithm for Cone-Beam Projections to Enable Image- and Dose-Guided Proton Therapy},
author = {Andersen, A and Casares-Magaz, O and Elstroem, U and Petersen, J and Muren, L and Park, Y and Winey, B},
abstractNote = {Purpose: Cone-beam CT (CBCT) imaging may enable image- and dose-guided proton therapy, but is challenged by image artefacts. The aim of this study was to demonstrate the general applicability of a previously developed a priori scatter correction algorithm to allow CBCT-based proton dose calculations. Methods: The a priori scatter correction algorithm used a plan CT (pCT) and raw cone-beam projections acquired with the Varian On-Board Imager. The projections were initially corrected for bow-tie filtering and beam hardening and subsequently reconstructed using the Feldkamp-Davis-Kress algorithm (rawCBCT). The rawCBCTs were intensity normalised before a rigid and deformable registration were applied on the pCTs to the rawCBCTs. The resulting images were forward projected onto the same angles as the raw CB projections. The two projections were subtracted from each other, Gaussian and median filtered, and then subtracted from the raw projections and finally reconstructed to the scatter-corrected CBCTs. For evaluation, water equivalent path length (WEPL) maps (from anterior to posterior) were calculated on different reconstructions of three data sets (CB projections and pCT) of three parts of an Alderson phantom. Finally, single beam spot scanning proton plans (0–360 deg gantry angle in steps of 5 deg; using PyTRiP) treating a 5 cm central spherical target in the pCT were re-calculated on scatter-corrected CBCTs with identical targets. Results: The scatter-corrected CBCTs resulted in sub-mm mean WEPL differences relative to the rigid registration of the pCT for all three data sets. These differences were considerably smaller than what was achieved with the regular Varian CBCT reconstruction algorithm (1–9 mm mean WEPL differences). Target coverage in the re-calculated plans was generally improved using the scatter-corrected CBCTs compared to the Varian CBCT reconstruction. Conclusion: We have demonstrated the general applicability of a priori CBCT scatter correction, potentially opening for CBCT-based image/dose-guided proton therapy, including adaptive strategies. Research agreement with Varian Medical Systems, not connected to the present project.},
doi = {10.1118/1.4956106},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the conemore » and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost, an overall 3.1 × speedup factor has been achieved with four GPU cards compared to a single GPU-based reconstruction. The total computation time is ∼30 s for typical clinical cases. Conclusions: The authors have developed a low-dose CBCT IR system for IGRT. By incorporating data consistency-based weighting factors in the IR model, cone/ring artifacts can be mitigated. A boost in computational efficiency is achieved by multi-GPU implementation.« less
  • Purpose: To evaluate a moving-blocker-based approach in estimating and correcting megavoltage (MV) and kilovoltage (kV) scatter contamination in kV cone-beam computed tomography (CBCT) acquired during volumetric modulated arc therapy (VMAT). Methods: XML code was generated to enable concurrent CBCT acquisition and VMAT delivery in Varian TrueBeam developer mode. A physical attenuator (i.e., “blocker”) consisting of equal spaced lead strips (3.2mm strip width and 3.2mm gap in between) was mounted between the x-ray source and patient at a source to blocker distance of 232mm. The blocker was simulated to be moving back and forth along the gantry rotation axis during themore » CBCT acquisition. Both MV and kV scatter signal were estimated simultaneously from the blocked regions of the imaging panel, and interpolated into the un-blocked regions. Scatter corrected CBCT was then reconstructed from un-blocked projections after scatter subtraction using an iterative image reconstruction algorithm based on constraint optimization. Experimental studies were performed on a Catphan 600 phantom and an anthropomorphic pelvis phantom to demonstrate the feasibility of using moving blocker for MV-kV scatter correction. Results: MV scatter greatly degrades the CBCT image quality by increasing the CT number inaccuracy and decreasing the image contrast, in addition to the shading artifacts caused by kV scatter. The artifacts were substantially reduced in the moving blocker corrected CBCT images in both Catphan and pelvis phantoms. Quantitatively, CT number error in selected regions of interest reduced from 377 in the kV-MV contaminated CBCT image to 38 for the Catphan phantom. Conclusions: The moving-blockerbased strategy can successfully correct MV and kV scatter simultaneously in CBCT projection data acquired with concurrent VMAT delivery. This work was supported in part by a grant from the Cancer Prevention and Research Institute of Texas (RP130109) and a grant from the American Cancer Society (RSG-13-326-01-CCE)« less
  • Purpose: To perform a comprehensive study on organ absorbed doses and effective doses from cone beam computed tomography (CBCT) for three different treatment sites. Methods and Materials: An extensive set of dosimetric measurements were performed using a widely used CBCT system, the On-Board Imager (OBI). Measurements were performed using a female anthropomorphic phantom with thermoluminescent dosimeters (TLD). The effective doses to the body and the absorbed doses to 26 organs were reported using two different technical settings, namely, the standard mode and the low-dose mode. The measurements were repeated for three different scan sites: head and neck, chest, and pelvis.more » Comparisons of patient doses as well as image quality were performed among the standard mode CBCT, low-dose mode CBCT, and fan beam CT. Results: The mean skin doses from standard mode CBCT to head and neck, chest and pelvis were 6.7, 6.4, and 5.4 cGy per scan, respectively. The effective doses to the body from standard mode CBCT for imaging of head and neck, chest, and pelvis were 10.3, 23.7, and 22.7 mSv per scan, respectively. Patient doses from low-dose mode CBCT were approximately one fifth of those from standard mode CBCT. Conclusions: Patient position verification by standard mode CBCT acquired by OBI on a daily basis could increase the secondary cancer risk by up to 2% to 4%. Therefore lower mAs settings for daily CBCT should be considered, especially when bony anatomy is the main interest.« less
  • Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction.more » The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.« less
  • Purpose: To determine the variability of Cone-Beam CT Dose Index (CB-CTDI) across multiple on-board imaging (OBI) systems within a single institution, and compare this to manufacturer provided data. Methods: The CB-CTDI was measured on three Trilogy and three TrueBeam Varian OBI systems, for six different clinically used scan protocols. Measurements were taken using a 10 cm long CT ionization chamber in either a 16 cm (head-simulating) or 32 cm (body-simulating) diameter, acrylic, cylindrical, 15 cm long CTDI phantom. We assessed the variation in CB-CTDI between the OBI systems and compared our measured values to the data provided by the manufacturer.more » Results: The standard error in the CB-CTDI measured for all protocols was found to be within ±2% and ±5% of the mean for TrueBeam and Trilogy, respectively. For all head scan protocols, the measured TrueBeam values were lower than the manufacturer’s reported values, with a maximum difference of 13.9% and an average difference of 11%. For the body scan protocols, the TrueBeam measured values were 3% and 13% greater than the manufacturer’s reported values for two out of three protocols, and 38% lower than reported for the third protocol. In total, 7/18 CB-CTDI measurements fell within the manufacturers specified range (±10%). Across all scans the Truebeam machines were found to have a lower CB-CTDI than Trilogy, particularly the head scan protocols, which show decreases of up to 30% . Conclusion: The intra-institutional variation of CB-CTDI was found to be clinically acceptable at less than 5%. For the TrueBeam OBI system, over half of the measured scans failed to fall with in the manufactured quoted range of 10%, however, all measured values were within 15% of the manufacturer’s reported values. For accurate assessment and reporting of imaging dose to radiotherapy patients, our results indicate a need for standardization in CB-CTDI measurement technique.« less