skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-173: Online Replanning for Dose Painting Based On Changing ADC Map of Pancreas Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4956081· OSTI ID:22634770
; ; ;  [1]
  1. Medical College of Wisconsin, Milwaukee, WI (United States)

Purpose: The introduction of MR-guided radiation therapy (RT), e.g., MR-Linac, would allow dose painting to adapt spatial RT response revealed from MRI data during the RT delivery. The purpose of this study is to investigate the use of an online replanning method to adapt dose painting from the MRI Apparent Diffusion Coefficient (ADC) map acquired during the delivery of RT for pancreatic cancers. Methods: Original dose painting plans were created based on multi-parametric simulation MRI including T1, T2 and ADC, using a treatment planning system (MONACO, Elekta) equipped with an online replanning algorithm (WSO, warm start optimization). Multiple GTVs, identified based on various ADC levels were prescribed to different doses ranging from 50–70 Gy with simultaneous integrated boost in 28 fractions. The MRI acquired after RT were used to mimic weekly MRI, on which the changing GTVs, pancreatic head and other organs-at-risk (OAR) (duodenum, stomach, small bowel) were delineated. The adaptive plan was generated by applying WSO algorithm starting from the deformed original plan based on the weekly MRI using a deformable image registration (DIR) software (ADMIRE, Elekta). The online replanning method takes <10 min. including DIR, target delineation, WSO execution and final dose calculation. Standard IGRT repositioning and full-blown reoptimization plans were also generated to compare with the adaptive plans. Results: The online replanning method significantly improved the multiple target coverages and OAR sparing for pancreatic cancers. For example, for a case with two GTVs with prescriptions of 60 and 70 Gy in pancreatic head, V100-GTV70 (the volume covered by 100% of prescription dose for GTV with 70 Gy)/V100-GTV60/V100-CTV50/V45-duodenum were (95.1/22.2/69.5/85.7), (95.0/97.0/98.6/34.3), and (95.0/98.1/100.0/38.7) for the IGRT, adaptive and reoptimization plans, respectively. Conclusion: The introduced online adaptive replanning method can effectively account for interfractional changes including tumor spatial response during MR-guided RT delivery, allowing precise delivery of dose painting. This study was partially supported by Elekta Inc.

OSTI ID:
22634770
Journal Information:
Medical Physics, Vol. 43, Issue 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English