skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-J-43: Positional Variation of Implanted Fiducial Markers Over the Course of Image Guided Radiotherapy for Pancreatic Cancer

Abstract

Purpose: Pancreas is a soft-tissue organ, implanted fiducials can change positions due to migration or tissue deformation. This study quantified positional variation of fiducials in IGRT for pancreatic cancer. Methods: 20 patients had at least 3 gold fiducials implanted in pancreas under EUS guidance. Patients had 4D-CT simulation for gated treatment. Daily gated OBI kV images (Turebeam) were used for positional alignment with fiducials for total of 25 or 28 fractions. Relative distances among 3 fiducials (d{sub 1–} {sub 2}, d{sub 1–3}, d{sub 2–3}) were measured from 4D-CT end-of-expiration phase bin; and from gated kV images in first, mid, and last fraction (n=180). Results: The median duration between implant and simulation was 11 (range 0–41) days. The median duration between simulation and first fraction was 17 (range 8–24) days. The median relative distance was 12 (range 4–78) mm for d{sub 1–2}, 24 (range 6–80) mm for d{sub 1–3}, and 19 (range 5–63) mm for d{sub 2–3}. The median deviation was 1 mm for d{sub 1–2}, d{sub 1–3}, d{sub 2–3} between simulation and first fraction, first and mid fraction, mid and last fraction (n=180). Two patients (10%) had deviation >= 5 mm (5, 11 mm) between simulation and first fraction. Onemore » patient (5%) had deviation >= 5 mm (11 mm) between first and mid fraction. No patient (0%) had deviation >= 5 mm between mid and last fraction. In all 3 cases with deviation >=5 mm, only one fiducial was significantly deviated. No clear evidence that deviation size was associated with time interval between implant and first fraction. Conclusion: Implanted gold fiducials were quite stable over time in their relative positions in pancreas. Our data suggested at least 3 fiducials are needed. In cases that one fiducial was significantly deviated in daily kV images, this fiducial should be excluded in image guidance.« less

Authors:
; ; ; ; ;  [1]
  1. University Alabama Birmingham, Birmingham, AL (United States)
Publication Date:
OSTI Identifier:
22632175
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALIGNMENT; ANIMAL TISSUES; COMPUTERIZED TOMOGRAPHY; DEFORMATION; FIDUCIAL MARKERS; IMAGES; IMPLANTS; NEOPLASMS; PANCREAS; PATIENTS; RADIOTHERAPY; SIMULATION

Citation Formats

Shen, S, Jacob, R, Popple, R, Wu, X, Cardan, R, and Brezovich, I. SU-F-J-43: Positional Variation of Implanted Fiducial Markers Over the Course of Image Guided Radiotherapy for Pancreatic Cancer. United States: N. p., 2016. Web. doi:10.1118/1.4955951.
Shen, S, Jacob, R, Popple, R, Wu, X, Cardan, R, & Brezovich, I. SU-F-J-43: Positional Variation of Implanted Fiducial Markers Over the Course of Image Guided Radiotherapy for Pancreatic Cancer. United States. doi:10.1118/1.4955951.
Shen, S, Jacob, R, Popple, R, Wu, X, Cardan, R, and Brezovich, I. Wed . "SU-F-J-43: Positional Variation of Implanted Fiducial Markers Over the Course of Image Guided Radiotherapy for Pancreatic Cancer". United States. doi:10.1118/1.4955951.
@article{osti_22632175,
title = {SU-F-J-43: Positional Variation of Implanted Fiducial Markers Over the Course of Image Guided Radiotherapy for Pancreatic Cancer},
author = {Shen, S and Jacob, R and Popple, R and Wu, X and Cardan, R and Brezovich, I},
abstractNote = {Purpose: Pancreas is a soft-tissue organ, implanted fiducials can change positions due to migration or tissue deformation. This study quantified positional variation of fiducials in IGRT for pancreatic cancer. Methods: 20 patients had at least 3 gold fiducials implanted in pancreas under EUS guidance. Patients had 4D-CT simulation for gated treatment. Daily gated OBI kV images (Turebeam) were used for positional alignment with fiducials for total of 25 or 28 fractions. Relative distances among 3 fiducials (d{sub 1–} {sub 2}, d{sub 1–3}, d{sub 2–3}) were measured from 4D-CT end-of-expiration phase bin; and from gated kV images in first, mid, and last fraction (n=180). Results: The median duration between implant and simulation was 11 (range 0–41) days. The median duration between simulation and first fraction was 17 (range 8–24) days. The median relative distance was 12 (range 4–78) mm for d{sub 1–2}, 24 (range 6–80) mm for d{sub 1–3}, and 19 (range 5–63) mm for d{sub 2–3}. The median deviation was 1 mm for d{sub 1–2}, d{sub 1–3}, d{sub 2–3} between simulation and first fraction, first and mid fraction, mid and last fraction (n=180). Two patients (10%) had deviation >= 5 mm (5, 11 mm) between simulation and first fraction. One patient (5%) had deviation >= 5 mm (11 mm) between first and mid fraction. No patient (0%) had deviation >= 5 mm between mid and last fraction. In all 3 cases with deviation >=5 mm, only one fiducial was significantly deviated. No clear evidence that deviation size was associated with time interval between implant and first fraction. Conclusion: Implanted gold fiducials were quite stable over time in their relative positions in pancreas. Our data suggested at least 3 fiducials are needed. In cases that one fiducial was significantly deviated in daily kV images, this fiducial should be excluded in image guidance.},
doi = {10.1118/1.4955951},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured inmore » the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.« less
  • Purpose: Dual-function fiducials loaded with radiosensitizers, like gold nanoparticles (GNP), offer an innovative approach for ensuring geometric accuracy during image-guided radiotherapy (IGRT) and significantly increasing therapeutic efficacy due to controlled in-situ release of the radiosensitizers. This study retrospectively investigates the dosimetric benefit of using up to two such dual-function fiducial markers instead of traditional single function fiducials during IGRT. Methods: A computational code was developed to investigate the dosimetric benefit for 10 real patient tumor volumes of up to 6.5 cm diameter. The intra-tumoral space-time biodistribution of the GNP was modeled as in previous studies based on Fick’s second law.more » The corresponding dose-enhancement for each tumor voxel due to the GNP was also calculated for clinical 6MV beam configurations. Various loading concentrations (25–50 mg/g) were studied, as a function of GNP size, to determine potential for clinically significant dose enhancement. The time between initial implantation of dual-function fiducials to the beginning of radiotherapy was assumed to be 14 days as typical for many clinics. Results: A single dual-function fiducial could achieve at least a DEF of 1.2 for patients with tumors less than 1.4 cm diameter after 14 days. Replacing two single function fiducials with dual-function ones at the same locations achieved at least the required minimal DEF for tumors that are 2 cm diameter in 3 patients. The results also revealed dosimetrically better fiducial locations which could enable significant DEF when using one or two dual function fiducials. 2 nm sizes showed the most feasibility. Conclusion: The results highlight the potential of tumor sub-volume radiation boosting using GNP released from fiducials, and the ability to customize the DEF throughout the tumor by using two dual-function fiducials, varying the initial concentration and nanoparticle size. The results demonstrate potential for employing dual-function fiducials in the development of GNP-aided radiotherapy.« less
  • Purpose: In radiation therapy of pancreatic cancer, tumor alignment prior to each treatment fraction is improved when intratumoral gold fiducial markers (from here onwards: markers), which are visible on computed tomography (CT) and cone beam CT, are used. Visibility of these markers on magnetic resonance imaging (MRI) might improve image registration between CT and magnetic resonance (MR) images for tumor delineation purposes. However, concomitant image artifacts induced by markers are undesirable. The extent of visibility and artifact size depend on MRI-sequence parameters. The authors’ goal was to determine for various markers their potential to be visible and to generate artifacts,more » using measures that are independent of the MRI-sequence parameters. Methods: The authors selected ten different markers suitable for endoscopic placement in the pancreas and placed them into a phantom. The markers varied in diameter (0.28–0.6 mm), shape, and iron content (0%–0.5%). For each marker, the authors calculated T{sub 2}{sup ∗}-maps and ΔB{sub 0}-maps using MRI measurements. A decrease in relaxation time T{sub 2}{sup ∗} can cause signal voids, associated with visibility, while a change in the magnetic field B{sub 0} can cause signal shifts, which are associated with artifacts. These shifts inhibit accurate tumor delineation. As a measure for potential visibility, the authors used the volume of low T{sub 2}{sup ∗}, i.e., the volume for which T{sub 2}{sup ∗} differed from the background by >15 ms. As a measure for potential artifacts, the authors used the volume for which |ΔB{sub 0}| > 9.4 × 10{sup −8} T (4 Hz). To test whether there is a correlation between visibility and artifact size, the authors calculated the Spearman’s correlation coefficient (R{sub s}) between the volume of low T{sub 2}{sup ∗} and the volume of high |ΔB{sub 0}|. The authors compared the maps with images obtained using a clinical MR-sequence. Finally, for the best visible marker as well as the marker that showed the smallest artifact, the authors compared the phantom data with in vivo MR-images in four pancreatic cancer patients. Results: The authors found a strong correlation (R{sub s} = 1.00, p < 0.01) between the volume of low T{sub 2}{sup ∗} and the volume with high |ΔB{sub 0}|. Visibility in clinical MR-images increased with lower T{sub 2}{sup ∗}. Signal shift artifacts became worse for markers with high |ΔB{sub 0}|. The marker that was best visible in the phantom, a folded marker with 0.5% iron content, was also visible in vivo, but showed artifacts on diffusion weighted images. The marker with the smallest artifact in the phantom, a small, stretched, ironless marker, was indiscernible on in vivo MR-images. Conclusions: Changes in T{sub 2}{sup ∗} and ΔB{sub 0} are sequence-independent measures for potential visibility and artifact size, respectively. Improved visibility of markers correlates strongly to signal shift artifacts; therefore, marker choice will depend on the clinical purpose. When visibility of the markers is most important, markers that contain iron are optimal, preferably in a folded configuration. For artifact sensitive imaging, small ironless markers are best, preferably in a stretched configuration.« less
  • Purpose: The aim of this work was to assess the accuracy of kilovoltage (kV) cone-beam computed tomography (CBCT)-based setup corrections as compared with orthogonal megavoltage (MV) portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Methods and Materials: Daily cone-beam CT volumetric images were acquired after setup for patients with three intraprostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection tomore » suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results: The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs. kV was (R{sup 2} = 0.95, 0.84, 0.81) in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. The correlation using soft-tissue matching was as follows: R{sup 2} = 0.90, 0.49, 0.51 in the LR, AP and SI directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a {+-}3-mm tolerance (the clinical action level) was 99.7%, 95.5%, 91.3% for fiducial marker matching and 99.5%, 70.3%, 78.4% for soft-tissue matching. Conclusions: Cone-beam CT is an accurate and precise tool for image guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research.« less
  • Purpose: To compare the retention rates of two types of implanted fiducial markers for stereotactic ablative radiotherapy (SABR) of pulmonary tumors, smooth cylindrical gold 'seed' markers ('seeds') and platinum endovascular embolization coils ('coils'), and to compare the complication rates associated with the respective implantation procedures. Methods and Materials: We retrospectively analyzed the retention of percutaneously implanted markers in 54 consecutive patients between January 2004 and June 2009. A total of 270 markers (129 seeds, 141 coils) were implanted in or around 60 pulmonary tumors over 59 procedures. Markers were implanted using a percutaneous approach under computed tomography (CT) guidance. Postimplantationmore » and follow-up imaging studies were analyzed to score marker retention relative to the number of markers implanted. Markers remaining near the tumor were scored as retained. Markers in a distant location (e.g., pleural space) were scored as lost. CT imaging artifacts near markers were quantified on radiation therapy planning scans. Results: Immediately after implantation, 140 of 141 coils (99.3%) were retained, compared to 110 of 129 seeds (85.3%); the difference was highly significant (p < 0.0001). Of the total number of lost markers, 45% were reported lost during implantation, but 55% were lost immediately afterwards. No additional markers were lost on longer-term follow-up. Implanted lesions were peripherally located for both seeds (mean distance, 0.33 cm from pleural surface) and coils (0.34 cm) (p = 0.96). Incidences of all pneumothorax (including asymptomatic) and pneumothorax requiring chest tube placement were lower in implantation of coils (23% and 3%, respectively) vs. seeds (54% and 29%, respectively; p = 0.02 and 0.01). The degree of CT artifact was similar between marker types. Conclusions: Retention of CT-guided percutaneously implanted coils is significantly better than that of seed markers. Furthermore, implanting coils is at least as safe as implanting seeds. Using coils should permit implantation of fewer markers and require fewer repeat implantation procedures owing to lost markers.« less