Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

SU-F-R-42: Association of Radiomic and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4955813· OSTI ID:22626762

Purpose: High-throughput extraction of imaging and metabolomic quantitative features from MRI and MR Spectroscopy Imaging (MRSI) of Glioblastoma Multiforme (GBM) results in tens of variables per patient. In radiotherapy (RT) of GBM, the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl Aspartate (NAA) and Choline (Cho). Corresponding Clinical Target Volumes (CTVs) for RT planning are based on Contrast Enhancing T1-weighted MRI (CE-T1w) and T2-weighted/Fluid Attenuated Inversion Recovery (FLAIR) MRI. The objective is to build a framework for investigation of associations between imaging, CTV, and MTV features better understanding of the underlying information in the CTVs and dependencies between these volumes. Methods: Necrotic portions, enhancing lesion and edema were manually contoured on T1w/T2w images for 17 GBM patients. CTVs and MTVs for NAA (MTV{sub NAA}) and Cho (MTV{sub Cho}) were constructed. Tumors were scored categorically for ten semantic imaging traits by neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and RT/MTV features were visualized as heat maps. Associations between MTV{sub NAA}, MTV{sub Cho} and imaging features were studied using Spearman correlation. Results: 39 imaging features were computed per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. 21 features were extracted from MTVs/CTVs. There were a high number (43) of significant correlations of imaging with CTVs/MTV{sub NAA} while very few (10) significant correlations were with CTVs/MTV{sub Cho}. MTV{sub NAA} was found to be closely associated with MRI volumes, MTV{sub Cho} remains elusive for characterization with imaging. Conclusion: A framework for investigation of co-dependency between MRI and RT/metabolic features is established. A series of semantic imaging traits were replaced with automatically extracted continuous variables. The approach will allow for exploration of relationships between sizes and intersection of imaging features of tumors, RT volumes, metabolite concentrations and comparing those to therapy outcome, quality of life evaluation and overall survival rate. This publication was supported by Grant 10BN03 from Bankhead Coley Cancer Research Program, R01EB000822, R01EB016064, and R01CA172210 from the National Institutes of Health, and Indo-US Science & Technology Forum award #20-2009. Bhaswati Roy received financial assistance from University Grant Commission, New Delhi, India.

OSTI ID:
22626762
Journal Information:
Medical Physics, Journal Name: Medical Physics Journal Issue: 6 Vol. 43; ISSN 0094-2405; ISSN MPHYA6
Country of Publication:
United States
Language:
English

Similar Records

Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes
Journal Article · Wed Oct 01 00:00:00 EDT 2014 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:22423823

Image-fusion of MR spectroscopic images for treatment planning of gliomas
Journal Article · Sat Jan 14 23:00:00 EST 2006 · Medical Physics · OSTI ID:20774982

Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme
Journal Article · Wed Oct 01 00:00:00 EDT 2014 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:22423824