skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana

Abstract

Purpose: The global burden of cancer is considerable, particularly in low and middle-income countries. Massachusetts General Hospital (MGH) and Botswana-Harvard AIDS Institute have partnered with the oncology community and government of Botswana to form BOTSOGO (BOTSwana Oncology Global Outreach) to address the rising burden of cancer in Botswana. Currently, radiation therapy (RT) is only available at a single linear accelerator (LINAC) in Gaborone Private Hospital (GPH). BOTSOGO worked to limit the absence of RT during a LINAC upgrade and ensure a safe transition to modern radiotherapy techniques. Methods: The existing Elekta Precise LINAC was decommissioned in November 2015 and replaced with a new Elekta VERSA-HD with IMRT/VMAT/CBCT capability. Upgraded treatment planning and record-and-verify systems were also installed. Physicists from GPH and MGH collaborated during an intensive on-site visit in Botswana during the commissioning process. Measurements were performed using newly purchased Sun Nuclear equipment. Photon beams were matched with an existing model to minimize the time needed for beam modeling and machine down time. Additional remote peer review was also employed. Independent dosimetry was performed by irradiating OSLDs, which were subsequently analyzed at MGH. Results: Photon beam quality agreed with reference data within 0.2%. Electron beam data agreed with example clinicalmore » data within 3%. Absolute dose calibration was performed using both IAEA and AAPM protocols. Absolute dose measurements with OSLDs agreed within 5%. Quentry cloud-based software was installed to facilitate remote review of treatment plans. Patient treatments resumed in February 2016. The time without RT was reduced, therefore likely resulting in reduced patient morbidity/mortality. Conclusion: A global physics collaboration was utilized to commission a modern LINAC in a resource-constrained setting. This can be a useful model in other areas with limited resources. Further use of technology and on-site exchanges will facilitate the introduction of more advanced techniques in Botswana. We acknowledge funding support from the AAPM International Educational Activities Committee and the NCI Federal Share Proton Beam Program Income Grant.« less

Authors:
; ;  [1];  [2]; ;  [2];  [3];  [4];  [3];  [5];  [6];  [7]
  1. Gaborone Private Hospital, Gaborone (Botswana)
  2. Massachusetts General Hospital, Boston, MA (United States)
  3. (United States)
  4. Harvard Medical School, Boston, MA (United States)
  5. Associates in Medical Physics, Louisville, KY (United States)
  6. Hamad Medical Corporation, Shelbyville, TN (United States)
  7. Forest Hills, NY (United States)
Publication Date:
OSTI Identifier:
22624452
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BOTSWANA; CALIBRATION; COMMISSIONING; COMPUTER CODES; COMPUTERIZED TOMOGRAPHY; ELECTRON BEAMS; HOSPITALS; IAEA; IMPLEMENTATION; LINEAR ACCELERATORS; NEOPLASMS; PATIENTS; PHOTON BEAMS; PROTON BEAMS; RADIATION DOSES; RADIOTHERAPY; REVIEWS

Citation Formats

Makufa, R, Bvochora-Nsingo, M, Karumekayi, T, Schneider, RJ, Efstathiou, JA, Gierga, DP, Harvard Medical School, Boston, MA, Dryden-Peterson, S, Brigham and Women’s Hospital, Boston, MA, Odom, A, Shulman, A, and Pipman, Y. SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana. United States: N. p., 2016. Web. doi:10.1118/1.4955716.
Makufa, R, Bvochora-Nsingo, M, Karumekayi, T, Schneider, RJ, Efstathiou, JA, Gierga, DP, Harvard Medical School, Boston, MA, Dryden-Peterson, S, Brigham and Women’s Hospital, Boston, MA, Odom, A, Shulman, A, & Pipman, Y. SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana. United States. doi:10.1118/1.4955716.
Makufa, R, Bvochora-Nsingo, M, Karumekayi, T, Schneider, RJ, Efstathiou, JA, Gierga, DP, Harvard Medical School, Boston, MA, Dryden-Peterson, S, Brigham and Women’s Hospital, Boston, MA, Odom, A, Shulman, A, and Pipman, Y. 2016. "SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana". United States. doi:10.1118/1.4955716.
@article{osti_22624452,
title = {SU-F-P-09: A Global Medical Physics Collaboration for Implementation of Modern Radiotherapy in Botswana},
author = {Makufa, R and Bvochora-Nsingo, M and Karumekayi, T and Schneider, RJ and Efstathiou, JA and Gierga, DP and Harvard Medical School, Boston, MA and Dryden-Peterson, S and Brigham and Women’s Hospital, Boston, MA and Odom, A and Shulman, A and Pipman, Y},
abstractNote = {Purpose: The global burden of cancer is considerable, particularly in low and middle-income countries. Massachusetts General Hospital (MGH) and Botswana-Harvard AIDS Institute have partnered with the oncology community and government of Botswana to form BOTSOGO (BOTSwana Oncology Global Outreach) to address the rising burden of cancer in Botswana. Currently, radiation therapy (RT) is only available at a single linear accelerator (LINAC) in Gaborone Private Hospital (GPH). BOTSOGO worked to limit the absence of RT during a LINAC upgrade and ensure a safe transition to modern radiotherapy techniques. Methods: The existing Elekta Precise LINAC was decommissioned in November 2015 and replaced with a new Elekta VERSA-HD with IMRT/VMAT/CBCT capability. Upgraded treatment planning and record-and-verify systems were also installed. Physicists from GPH and MGH collaborated during an intensive on-site visit in Botswana during the commissioning process. Measurements were performed using newly purchased Sun Nuclear equipment. Photon beams were matched with an existing model to minimize the time needed for beam modeling and machine down time. Additional remote peer review was also employed. Independent dosimetry was performed by irradiating OSLDs, which were subsequently analyzed at MGH. Results: Photon beam quality agreed with reference data within 0.2%. Electron beam data agreed with example clinical data within 3%. Absolute dose calibration was performed using both IAEA and AAPM protocols. Absolute dose measurements with OSLDs agreed within 5%. Quentry cloud-based software was installed to facilitate remote review of treatment plans. Patient treatments resumed in February 2016. The time without RT was reduced, therefore likely resulting in reduced patient morbidity/mortality. Conclusion: A global physics collaboration was utilized to commission a modern LINAC in a resource-constrained setting. This can be a useful model in other areas with limited resources. Further use of technology and on-site exchanges will facilitate the introduction of more advanced techniques in Botswana. We acknowledge funding support from the AAPM International Educational Activities Committee and the NCI Federal Share Proton Beam Program Income Grant.},
doi = {10.1118/1.4955716},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To build a world-class medical physics educational program that capitalizes on expertise distributed over several clinical, government, and academic centres. Few if any of these centres would have the critical mass to solely resource a program. Methods: In order to enable an academic program, stakeholders from five institutions made a proposal to Carleton University for a) a research network with defined membership requirements and a process for accepting new members, and b) a graduate specialization (MSc and PhD) in medical physics. Both proposals were accepted and the program has grown steadily. Our courses are taught by medical physicists frommore » across the collaboration. Our students have access to physicists in: clinical radiotherapy (the Ottawa Cancer Centre treats 4500 new patients/y), radiology, cardiology and nuclear medicine, Canada’s primary standards dosimetry laboratory, radiobiology, and university-based medical physics research. Our graduate courses emphasize the foundational physics plus applied aspects of imaging, radiotherapy, and radiobiology. Active researchers in the city-wide volunteer-run network are appointed as adjunct professors by Physics, giving them access to national funding competitions and partial student funding through teaching assistantships while opening up facilities in their institutions for student thesis research. Results: The medical physics network has grown to ∼40 members from eight institutions and includes five full-time faculty in Physics and 17 adjunct research professors. The graduate student population is ∼20. Our graduates have proceeded to a spectrum of careers. Our alumni list includes a CCPM Past-President, the current COMP President, many clinical physicists, and the heads of at least three major clinical medical physics departments. Our PhD was Ontario’s first CAMPEP-accredited program. Conclusion: A self-governing volunteer network is the foundational element that enables an MSc/PhD medical physics program in a city with multiple physicist employers. It enriches graduate education with an unusually broad range of expertise.« less
  • Roentgen and the Birth of Modern Medical Physics – Perry Sprawls Wilhelm Roentgen is well known for his discovery of x-radiation. What is less known and appreciated is his intensive research following the discovery to determine the characteristics of the “new kind of radiation” and demonstrate its great value for medical purposes. In this presentation we will imagine ourselves in Roentgen’s mind and follow his thinking, including questions and doubts, as he designs and conducts a series of innovative experiments that provided the foundation for the rapid growth of medical physics. Learning Objectives: Become familiar with the personal characteristics andmore » work of Prof. Roentgen that establishes him as an inspiring model for the medical physics profession. Observe the thought process and experiments that determined and demonstrated the comprehensive characteristics of x-radiation. The AAPM Award Eponyms: William D. Coolidge, Edith H. Quimby, and Marvin M.D. Williams - Who were they and what did they do? – Lawrence N. Rothenberg William David Coolidge (1873–1975) William Coolidge was born in Hudson, NY in 1873. He obtained his BS at the Massacusetts Institute of Technology in 1896. Coolidge then went to the University of Leipzig, Germany for graduate study with physicists Paul Drude and Gustave Wiedemann and received a Ph.D. in 1899. While in Germany he met Wilhelm Roentgen. Coolidge returned to the US to teach at MIT where he was associated with Arthur A. Noyes of the Chemistry Department, working on the electrical conductivity of aqueous solutions. Willis R. Whitney, under whom Coolidge had worked before going to Germany, became head of the newly formed General Electric Research Laboratory and he invited Coolidge to work with him. In 1905, Coolidge joined the staff of the GE laboratory and was associated with it for the remainder of his life. He developed ductile tungsten filaments to replace fragile carbon filaments as the material for electric light bulb filaments. Until that innovation light bulbs had a notoriously short life. He later incorporated the ductile tungsten as a filament material for a hot cathode, fully evacuated x-ray tube, first described in 1912, which allowed higher current and x-ray output, and greater reliability than had previously been possible. These “Coolidge x-ray tubes” were far superior to the cold cathode, partial pressure gas x-ray tubes that had been in use since Roentgen’s discovery of x-rays in 1895. The Coolidge tube with incremental developments is now the key component for x-ray production in all of our modern x-ray imaging devices, such as CT scanners, interventional radiology systems, and mammography units. Coolidge was also involved in the development of sectional x-ray tubes for research and treatment that were initially designed to reach 800 kV. Additional improvements led to 1 MV and 2 MV devices. In 1932 Coolidge became director of the General Electric Research Laboratory, and in 1940, was made Vice-President and Director of Research. In 1945 he retired and was named Director Emeritus of the laboratory. Coolidge held 83 patents and was recognized for these and many other achievements by election to the National Academy of Engineers, a place in the Engineering Hall of Fame and the National Inventor’s Hall of Fame. The AAPM’s highest honor, the Coolidge Award, was named after him. He accepted Honorary Membership in the AAPM and was the first recipient of the AAPM Coolidge Award, which was presented to him in a special ceremony in Schenectady, NY in 1972 when he was 100 years old. Edith Hinckley Quimby (1891–1982) Edith Quimby was born in Rockford, IL in 1891. She graduated from Whitman College in Walla Walla, WA with a B.S. in 1913, and then obtained a masters degree from the University of California at Berkeley. Later in her career, after many significant achievements, Quimby was awarded honorary doctorates by Whitman College and Rutgers University. Edith Quimby was hired by Giacchino Failla as a radiation physicist at Memorial Hospital for Cancer in New York City. Failla had studied with Madame Curie and obtained his doctoral degree in her laboratory. After many groundbreaking medical physics studies from 1919 until 1942, they both moved to Columbia University. Dr. Quimby developed a widely employed dosimetry system for single plane implants with radium and radon seeds, and a dosimetry methodology for internal radionuclides. She was author of more than 75 scientific publications, and of significant textbooks including the first comprehensive physics textbook for radiologists “Physical Foundations of Radiology”, which was co-authored with Otto Glasser, Lauriston Taylor and James Weatherwax in the first edition, with Russell Morgan added for the second edition and Paul Goodwin for the fourth edition. With Sergei Feitelberg, M.D. she published two editions of “Radioactive Isotopes in Medicine and Biology: Basic Physics and Instrumentation”. Quimby became a renowned examiner for the American Board of Radiology when the third ABR examination, given in 1936, added physics. She served as President of the American Radium Society, received the RSNA Gold Medal, and also numerous prestigious awards given to women in science. Edith Quimby was a Charter Member of AAPM. The AAPM Lifetime Achievement Award was renamed the Edith H. Quimby Lifetime Achievement Award in her honor in 2011. Marvin Martin Dixon Williams (1902–1981) Marvin Williams was born in Walla Walla, WA in 1902, and attended the same college as Edith Quimby, graduating from Whitman College in 1926. He was greatly influenced to go into medical physics by her accomplishments. During his early career, Williams worked with James Weatherwax in Philadelphia while he was working toward an M.S. from the University of Pennsylvania. In 1931 Williams was awarded a Ph.D. in Biophysics from the University of Minnesota, with the work actually performed at the Mayo Clinic Graduate School of the University. While completing his Ph.D. studies, Marvin met Dr. Paul Hodges who had returned from the Peiping Union Medical College in Peiping (now Beijing), China. Hodges suggested that a physicist be sent to Peiping to install x-ray therapy equipment and a radon plant. Williams accepted the position and, in 1931, he and his wife Orpha left for China. Before going to China, Williams had spent time with the physics group at Memorial Hospital to learn about the operation of a radon plant. In China, he constructed the radon plant, employing 0.25 g of radium, and also installed the x-ray therapy unit. Williams and his wife returned to the US in 1935, and he accepted a research position at the Mayo Clinic. In 1950, he became Professor of Biophysics at Mayo, where he taught physics and biophysics until his retirement in 1967. Williams was also very active in the American Board of Radiology where, from 1944 through 1977, he examined over 3000 radiologists and 250 physicists. Marvin Williams was a Charter member of AAPM, served as the fourth President of AAPM in 1963, and was the fourth recipient the AAPM Coolidge Award in 1975. The Marvin Williams Award was originally established as the highest award of the American College of Medical Physics. When various functions of the ACMP were absorbed into the AAPM in 2012, the Marvin M D Williams Professional Achievement Award became one of the AAPM’s highest honors. Learning Objectives: Become familiar with the persons in whose honor the three major AAPM Award are named Learn about the achievements and activities which influenced the AAPM to name these awards in their honor.« less
  • Purpose: To develop a platform for catalyzing collaborative global Cancer Care Education and Research (CaRE), with a prime focus on enhancing Access to Medical Physics Education and Research Excellence (AMPERE) Methods: An analysis of over 50 global health collaborations between partners in the U.S. and low and middle income countries (LMIC) in Africa was carried out to assess the models of collaborations in Education and Research and relative success. A survey was carried out with questions including: the nature of the collaboration, how it was initiated, impact of culture and other factors, and recommendations for catalyzing/enhancing such collaborations. An onlinemore » platform called Global Health Catalyst was developed for enhancing AMPERE. Results: The analysis yielded three main models for global health collaborations with survey providing key recommendations on how to enhance such collaborations. Based on this, the platform was developed, and customized to allow Medical Physicists and other Radiation oncology (RadOnc) professionals interested in participating in Global health to readily do so e.g. teach an online course module, participate in training Medical Physicists or other RadOnc health professionals in LMIC, co-mentor students, residents or postdocs, etc. The growing list of features on the platform also include: a feature to enable people to easily find each other, form teams, operate more effectively as partners from different disciplines, institutions, nations and cultural backgrounds, share tools and technologies, obtain seed funding to develop curricula and/or embark upon new areas of investigation, and participate in humanitarian outreach: remote treatment planning assistance, and participation in virtual Chart Rounds, etc. Conclusion: The developed Global Health Catalyst platform could enable any Medical Physicist or RadoOnc professional interested in global health to readily participate in the Education/training of next generation RadOnc professionals and global health leaders, and enhance AMPERE, especially for LMIC.« less
  • Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporatedmore » lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skype and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules and model will be scaled to benefit many more trainees and other developing countries.« less
  • Purpose: To assess and compare secondary cancer risk resulting from intensity-modulated radiotherapy (IMRT) and proton therapy in patients with prostate and head-and-neck cancer. Methods and Materials: Intensity-modulated radiotherapy and proton therapy in the scattering mode were planned for 5 prostate caner patients and 5 head-and-neck cancer patients. The secondary doses during irradiation were measured using ion chamber and CR-39 detectors for IMRT and proton therapy, respectively. Organ-specific radiation-induced cancer risk was estimated by applying organ equivalent dose to dose distributions. Results: The average secondary doses of proton therapy for prostate cancer patients, measured 20-60cm from the isocenter, ranged from 0.4more » mSv/Gy to 0.1 mSv/Gy. The average secondary doses of IMRT for prostate patients, however, ranged between 3 mSv/Gy and 1 mSv/Gy, approximately one order of magnitude higher than for proton therapy. Although the average secondary doses of IMRT were higher than those of proton therapy for head-and-neck cancers, these differences were not significant. Organ equivalent dose calculations showed that, for prostate cancer patients, the risk of secondary cancers in out-of-field organs, such as the stomach, lungs, and thyroid, was at least 5 times higher for IMRT than for proton therapy, whereas the difference was lower for head-and-neck cancer patients. Conclusions: Comparisons of organ-specific organ equivalent dose showed that the estimated secondary cancer risk using scattering mode in proton therapy is either significantly lower than the cases in IMRT treatment or, at least, does not exceed the risk induced by conventional IMRT treatment.« less