skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT

Abstract

Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability index inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability indexmore » for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl lowered the detectability index than 525µm CsI:Tl. Conclusion: For the x-ray spectrum and imaging conditions considered, a 525µm thick CsI:Tl scintillator integrated with the CMOS detector is optimal for detecting microcalcification cluster. Funding support: Supported in part by NIH R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI. Disclosures: SV, GV and AK - Research collaboration, Koning Corp., West Henrietta, NY.« less

Authors:
; ; ; ;  [1]
  1. University of Massachusetts Medical School, Worcester, MA (United States)
Publication Date:
OSTI Identifier:
22624404
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; CESIUM IODIDES; COMPUTERIZED TOMOGRAPHY; FLUORESCENCE; INTERPOLATION; MAMMARY GLANDS; MONTE CARLO METHOD; PHANTOMS; QUANTUM EFFICIENCY; SEMICONDUCTOR MATERIALS; THICKNESS; TRANSFER FUNCTIONS; X-RAY SPECTRA

Citation Formats

Vedantham, S, Shrestha, S, Shi, L, Vijayaraghavan, G, and Karellas, A. SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT. United States: N. p., 2016. Web. doi:10.1118/1.4955660.
Vedantham, S, Shrestha, S, Shi, L, Vijayaraghavan, G, & Karellas, A. SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT. United States. doi:10.1118/1.4955660.
Vedantham, S, Shrestha, S, Shi, L, Vijayaraghavan, G, and Karellas, A. Wed . "SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT". United States. doi:10.1118/1.4955660.
@article{osti_22624404,
title = {SU-D-206-06: Task-Specific Optimization of Scintillator Thickness for CMOS-Detector Based Cone-Beam Breast CT},
author = {Vedantham, S and Shrestha, S and Shi, L and Vijayaraghavan, G and Karellas, A},
abstractNote = {Purpose: To optimize the cesium iodide (CsI:Tl) scintillator thickness in a complimentary metal-oxide semiconductor (CMOS)-based detector for use in dedicated cone-beam breast CT. Methods: The imaging task considered was the detection of a microcalcification cluster comprising six 220µm diameter calcium carbonate spheres, arranged in the form of a regular pentagon with 2 mm spacing on its sides and a central calcification, similar to that in ACR-recommended mammography accreditation phantom, at a mean glandular dose of 4.5 mGy. Generalized parallel-cascades based linear systems analysis was used to determine Fourier-domain image quality metrics in reconstructed object space, from which the detectability index inclusive of anatomical noise was determined for a non-prewhitening numerical observer. For 300 projections over 2π, magnification-associated focal-spot blur, Monte Carlo derived x-ray scatter, K-fluorescent emission and reabsorption within CsI:Tl, CsI:Tl quantum efficiency and optical blur, fiberoptic plate transmission efficiency and blur, CMOS quantum efficiency, pixel aperture function and additive noise, and filtered back-projection to isotropic 105µm voxel pitch with bilinear interpolation were modeled. Imaging geometry of a clinical prototype breast CT system, a 60 kV Cu/Al filtered x-ray spectrum from 0.3 mm focal spot incident on a 14 cm diameter semi-ellipsoidal breast were used to determine the detectability index for 300–600 µm thick (75µm increments) CsI:Tl. The CsI:Tl thickness that maximized the detectability index was considered optimal. Results: The limiting resolution (10% modulation transfer function, MTF) progressively decreased with increasing CsI:Tl thickness. The zero-frequency detective quantum efficiency, DQE(0), in projection space increased with increasing CsI:Tl thickness. The maximum detectability index was achieved with 525µm thick CsI:Tl scintillator. Reduced MTF at mid-to-high frequencies for 600µm thick CsI:Tl lowered the detectability index than 525µm CsI:Tl. Conclusion: For the x-ray spectrum and imaging conditions considered, a 525µm thick CsI:Tl scintillator integrated with the CMOS detector is optimal for detecting microcalcification cluster. Funding support: Supported in part by NIH R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI. Disclosures: SV, GV and AK - Research collaboration, Koning Corp., West Henrietta, NY.},
doi = {10.1118/1.4955660},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}