skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The inverse problem of estimating the gravitational time dilation

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1]
  1. Moscow State University, Sternberg Astronomical Institute (Russian Federation)

Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class of distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f){sup γ}, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.

OSTI ID:
22617138
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 123, Issue 5; Other Information: Copyright (c) 2016 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English