skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of plasma density from data on the ion current to cylindrical and planar probes

Journal Article · · Plasma Physics Reports
; ; ;  [1]
  1. Moscow State University, Skobeltsyn Nuclear Physics Institute (Russian Federation)

To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.

OSTI ID:
22612599
Journal Information:
Plasma Physics Reports, Vol. 42, Issue 12; Other Information: Copyright (c) 2016 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-780X
Country of Publication:
United States
Language:
English