skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphological and electrical properties of epoxy-based composites reinforced with exfoliated graphite

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4949720· OSTI ID:22609176
; ;  [1]; ; ;  [2]
  1. Department of Information and Electrical Engineering and Applied Mathematics University of Salerno, Via Giovanni Paolo II, Fisciano (Italy)
  2. Department of Industrial Engineering University of Salerno, Via Giovanni Paolo II, Fisciano (Italy)

An experimental study has been carried out to prepare and characterize epoxy/amine-based composites filled with different percentages of partially exfoliated graphite (i.e. pEG) particles having an exfoliation degree of 56% in order to analyze the effect of the filler amounts on the electrical properties of the resulting nanocomposites. Moreover, in order to fully investigate the direct relationship between the physical properties of the employed filler and the results of the electrical characterization, a structural and morphological characterization of the pEG samples is carried out by means of various type of analysis such as X-ray diffraction patterns, micro-Raman and Scanning Electron Microscopy (SEM) images. The DC electrical characterization reveals a percolation thresholds (EPT) that falls in the range [2–3] wt% and an electrical conductivity of about 0.66 S/m at the highest filler loading (6.5 wt%). From the analysis of the percolative curve it is possible to derive the percolation law parameters and in particular the critical exponent t, whose value (i.e. 1.2) reflects an effective 2D organization of the percolating structure consistent with the type of filler used (2-dimensional). Finally, an extensive analysis concerning the electrical properties in the frequency domain has been carried out in order to evaluate the effectiveness of pEG-loaded composites in terms of electromagnetic interference compatibility (EMC) and their applicability as radar absorbers materials (RAMs).

OSTI ID:
22609176
Journal Information:
AIP Conference Proceedings, Vol. 1736, Issue 1; Conference: 8. international conference on times of polymers and composites: From aerospace to nanotechnology, Naples (Italy), 19-23 Jun 2016; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English