Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4948232· OSTI ID:22608921
; ;  [1]
  1. Defence Metallurgical Research Laboratory, Kanchanbagh P.O., Hyderabad, India - 500 058 (India)
The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization current density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.
OSTI ID:
22608921
Journal Information:
AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1731; ISSN APCPCS; ISSN 0094-243X
Country of Publication:
United States
Language:
English