skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging

Abstract

The original monochromator design we present consists in a high-vacuum vessel comprising three monochromators mounted side-by-side: a Lauë/Lauë, a Bragg/Bragg, and a double-multilayer monochromator. The selection of one monochromator type is done remotely by sliding laterally the crystal support in the monochromator vessel. In this way, exotic combinations such as Lauë/Bragg are also possible. Installation and commissioning of the new monochromator at ESRF beamline ID19 was carried out 2013-2014 (the multilayers not being installed yet). Beamline ID19 offers not only superb beam characteristics for phase-contrast imaging with a high level of sensitivity but also compared to other synchrotron X-ray imaging facilities a large beam of currently up to 7 cm × 1.3 cm. A wide energy range can be accessed in a fixed-exit mode (depending on the optics chosen the accessible energy range is between 10 keV and 200 keV). A beryllium exit window (10 cm × 10 cm active opening) completes the monochromator assembly.

Authors:
; ; ; ; ;  [1]
  1. European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble (France)
Publication Date:
OSTI Identifier:
22608409
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1741; Journal Issue: 1; Conference: SRI2015: 12. international conference on synchrotron radiation instrumentation, New York, NY (United States), 6-10 Jul 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BEAM OPTICS; BRAGG REFLECTION; COMMISSIONING; COMPARATIVE EVALUATIONS; CRYSTALS; CURRENTS; DESIGN; EUROPEAN SYNCHROTRON RADIATION FACILITY; HARD X RADIATION; INSTALLATION; KEV RANGE; LAUE METHOD; LAYERS; MONOCHROMATORS; SENSITIVITY; SYNCHROTRONS

Citation Formats

Renier, M., E-mail: renier@esrf.fr, Rack, A., Valade, J. P., Boller, E., Bernard, P., and Tafforeau, P.. In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging. United States: N. p., 2016. Web. doi:10.1063/1.4952897.
Renier, M., E-mail: renier@esrf.fr, Rack, A., Valade, J. P., Boller, E., Bernard, P., & Tafforeau, P.. In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging. United States. doi:10.1063/1.4952897.
Renier, M., E-mail: renier@esrf.fr, Rack, A., Valade, J. P., Boller, E., Bernard, P., and Tafforeau, P.. 2016. "In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging". United States. doi:10.1063/1.4952897.
@article{osti_22608409,
title = {In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging},
author = {Renier, M., E-mail: renier@esrf.fr and Rack, A. and Valade, J. P. and Boller, E. and Bernard, P. and Tafforeau, P.},
abstractNote = {The original monochromator design we present consists in a high-vacuum vessel comprising three monochromators mounted side-by-side: a Lauë/Lauë, a Bragg/Bragg, and a double-multilayer monochromator. The selection of one monochromator type is done remotely by sliding laterally the crystal support in the monochromator vessel. In this way, exotic combinations such as Lauë/Bragg are also possible. Installation and commissioning of the new monochromator at ESRF beamline ID19 was carried out 2013-2014 (the multilayers not being installed yet). Beamline ID19 offers not only superb beam characteristics for phase-contrast imaging with a high level of sensitivity but also compared to other synchrotron X-ray imaging facilities a large beam of currently up to 7 cm × 1.3 cm. A wide energy range can be accessed in a fixed-exit mode (depending on the optics chosen the accessible energy range is between 10 keV and 200 keV). A beryllium exit window (10 cm × 10 cm active opening) completes the monochromator assembly.},
doi = {10.1063/1.4952897},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1741,
place = {United States},
year = 2016,
month = 7
}
  • We present a double multilayer monochromator (DMM) design which has been realized for the BAMline(BESSY-II light source, Germany) as well as in an updated version for the TopoTomo beamline (ANKA light source. Germany)[1-4]. The latter contains two pairs of multilayer stripes in order to avoid absorption edges of the coating material. For both DMMs, the second multilayer offers a meridional bending option for beam compression to increase the available photon flux density. Each multilayer mirror is equipped with a vertical stage for height adjustments allowing for compensation of varying incoming beam heights and giving a certain flexibility choosing the offset.more » The second multilayer can be moved in the beam direction in order to cover the full energy range available. Furthermore, a white beam option is available.« less
  • We investigate a microscope design that offers high signal sensitivity and hyperspectral imaging capabilities and allows for implementation of various optical imaging approaches while its operational complexity is minimized. This system utilizes long working distance microscope objectives that enable for off-axis illumination of the tissue thereby allowing for excitation at any optical wavelength and nearly eliminating spectral noise from the optical elements. Preliminary studies using human and animal tissues demonstrate the feasibility of this approach for real-time imaging of intact tissue microstructures using autofluorescence and light scattering imaging methods.
  • X-ray imaging has been an important tool to study the materials microstructure with the laboratory based sources however the advent of third generation synchrotron sources has introduced new concepts in X-ray imaging such as phase contrast imaging, micro-tomography, fluorescence imaging and diffraction enhance imaging. These techniques are being used to provide information of materials about their density distribution, porosity, geometrical and morphological characteristics at sub-micron scalewith improved contrast. This paper discusses the development of various imaging techniques at synchrotron based imaging beamline Indus-2 and few recent experiments carried out at this facility.
  • Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior ofmore » the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process.« less
  • Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT). A human lung was inflation-fixed by formaldehyde ventilation and then scanned in a 64-slice CT over its apex to base extent. Lung samples (8-mm diameter, 10-mm height, Nmore » = 12) were punched out, stained with osmium tetroxide, and scanned using synMCT at (4 {micro}m){sup 3} voxel size. The lung functional unit (acinus, N = 8) was segmented from the 3D tomographic image using an automated tree-analysis software program. Morphometric data of the lung were analyzed by ANOVA. Intra-acinar airways branching occurred over 11 generations. The mean acinar volume was 131.3 {+-} 29.2 mm{sup 3} (range, 92.5-171.3 mm{sup 3}) and the mean acinar surface was calculated with 1012 {+-} 26 cm{sup 2}. The airway internal diameter (starting from the bronchiolus terminalis) decreases distally from 0.66 {+-} 0.04 mm to 0.34 {+-} 0.06 mm (P < 0.001) and remains constant after the seventh generation (P < 0.5). The length of each generation ranges between 0.52 and 0.93 mm and did not show significant differences between the second and eleventh generation. The branching angle between daughter branches varies between 113-degree and 134-degree without significant differences between the generations (P < 0.3). This study demonstrates the feasibility of quantitating the 3D structure of the human acinus at the spatial resolution readily achievable using synMCT.« less