skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of sputtering power on structural, mechanical and photoluminescence properties of nanocrystalline SiC thin films

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4946704· OSTI ID:22606662
;  [1]
  1. Functional Nanomaterials Research Lab, Department of Physics and Center of Nanotechnology Indian Institute of Technology Roorkee, Roorkee 247667 (India)

In the present study, SiC thin films were deposited on Si (100) substrate by magnetron sputtering using a 4N purity commercial SiC target in argon atmosphere. The effect of sputtering RF power (140-170W) on structural, mechanical and photoluminescence properties were systematically studied by X-ray diffraction, field emission scanning electron microscopy, Nanoindentation and Spectrophotometer respectively. X-ray diffraction shows polycrystalline 4H-SiC phase with (105) preferred orientation and an enhancement in crystallite size with increasing power was also observed. The decrement in hardness and Young’s modulus with increment in RF power was ascribed to Hall-Petch relation. The maximum hardness and Young’s modulus were found to be 32 GPa and 232 GPa respectively. The photoluminescence spectra show peaks at 384 nm (3.22 eV) which corresponds to bandgap of 4H-SiC (phonon assisted band to band recombination) and 416 nm (2.99 eV) may be attributed to defect states and intensity of both peaks decreases as power increases.

OSTI ID:
22606662
Journal Information:
AIP Conference Proceedings, Vol. 1728, Issue 1; Conference: ICC 2015: International conference on condensed matter and applied physics, Bikaner (India), 30-31 Oct 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English