skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of silver on the shape of palladium nanoparticles

Abstract

We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared by the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.

Authors:
; ;  [1]
  1. Jaypee University of Information Technology, Waknaghat, Distt. Solan-173234 (H.P.) (India)
Publication Date:
OSTI Identifier:
22606586
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1728; Journal Issue: 1; Conference: ICC 2015: International conference on condensed matter and applied physics, Bikaner (India), 30-31 Oct 2015; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; ABSORPTION; CRYSTALS; DISTRIBUTION; ELECTRONS; ETHYLENE; GLYCOLS; NANOPARTICLES; PALLADIUM; PARTICLE SIZE; PVP; REDUCTION; SILVER; SILVER IONS; SPHERICAL CONFIGURATION; SYMMETRY; SYNTHESIS; TRANSMISSION; TRANSMISSION ELECTRON MICROSCOPY; ULTRAVIOLET SPECTRA; VISIBLE SPECTRA

Citation Formats

Gupta, Dikshita, E-mail: dgmonugupta@gmail.com, Barman, P. B., and Hazra, S. K.. Effect of silver on the shape of palladium nanoparticles. United States: N. p., 2016. Web. doi:10.1063/1.4946593.
Gupta, Dikshita, E-mail: dgmonugupta@gmail.com, Barman, P. B., & Hazra, S. K.. Effect of silver on the shape of palladium nanoparticles. United States. doi:10.1063/1.4946593.
Gupta, Dikshita, E-mail: dgmonugupta@gmail.com, Barman, P. B., and Hazra, S. K.. 2016. "Effect of silver on the shape of palladium nanoparticles". United States. doi:10.1063/1.4946593.
@article{osti_22606586,
title = {Effect of silver on the shape of palladium nanoparticles},
author = {Gupta, Dikshita, E-mail: dgmonugupta@gmail.com and Barman, P. B. and Hazra, S. K.},
abstractNote = {We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared by the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.},
doi = {10.1063/1.4946593},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1728,
place = {United States},
year = 2016,
month = 5
}
  • A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenationmore » indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.« less
  • The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions.more » We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.« less
  • Activity and selectivity of glycerol oxidation were highly dependent upon Pd surface coverage of Pd-on-Au bimetallic catalysts.