Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

Journal Article · · Biochemical and Biophysical Research Communications

Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

OSTI ID:
22606133
Journal Information:
Biochemical and Biophysical Research Communications, Journal Name: Biochemical and Biophysical Research Communications Journal Issue: 4 Vol. 476; ISSN BBRCA9; ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3
Journal Article · Fri May 20 00:00:00 EDT 2016 · Biochemical and Biophysical Research Communications · OSTI ID:22598739

Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C
Journal Article · Fri Oct 03 00:00:00 EDT 2014 · Biochemical and Biophysical Research Communications · OSTI ID:22416778

18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis
Journal Article · Fri Apr 20 00:00:00 EDT 2012 · Biochemical and Biophysical Research Communications · OSTI ID:22207819