Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mechanical properties and constitutive relations for tantalum and tantalum alloys under high-rate deformation

Technical Report ·
DOI:https://doi.org/10.2172/226058· OSTI ID:226058
; ;  [1]
  1. Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

Tantalum and its alloys have received increased interest as a model bcc metal and for defense-related applications. The stress-strain behavior of several tantalums, possessing varied compositions and manufacturing histories, and tantalum alloyed with tungsten, was investigated as a function of temperature from {minus}196 C to 1,000 C, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress for all the Ta-materials was found to be sensitive to the test temperature, the impurity and solute contents; however, the strain hardening remained very similar for various ``pure`` tantalums but increased with alloying. Powder-metallurgy (P/M) tantalum with various levels of oxygen content produced via different processing paths was also investigated. Similar mechanical properties compared to conventionally processed tantalums were achieved in the P/M Ta. This data suggests that the frequently observed inhomogeneities in the mechanical behavior of tantalum inherited from conventional processes can be overcome. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong, and the Mechanical Threshold Stress models were evaluated for all the Ta-based materials. Parameters were also fit for these models to a tantalum-bar material. Flow stresses of a Ta bar stock subjected to a large-strain deformation of {var_epsilon} = 1.85 via multiple upset forging were obtained. The capabilities and limitations of each model for large-strain applications are examined. The deformation mechanisms controlling high-rate plasticity in tantalum are revisited.

Research Organization:
Los Alamos National Lab., NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
226058
Report Number(s):
LA-UR--96-0602; CONF-960202--24; ON: DE96008493
Country of Publication:
United States
Language:
English

Similar Records

Constitutive behavior of tantalum and tantalum-tungsten alloys
Journal Article · Tue Oct 01 00:00:00 EDT 1996 · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science · OSTI ID:417857

Mechanical properties and constitutive relations for molybdenum under high-rate deformation
Technical Report · Wed Dec 31 23:00:00 EST 1997 · OSTI ID:674989

Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy
Journal Article · Sat Jun 15 00:00:00 EDT 2019 · Journal of Materials Engineering and Performance · OSTI ID:22970727