skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of non-equilibrium phenomena in inductively coupled plasma generators

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4958326· OSTI ID:22600031
;  [1]
  1. Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

OSTI ID:
22600031
Journal Information:
Physics of Plasmas, Vol. 23, Issue 7; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English

Cited By (1)

Modeling of high pressure arc-discharge with a fully-implicit Navier–Stokes stabilized finite element flow solver journal April 2017