skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compression-amplified EMIC waves and their effects on relativistic electrons

Abstract

During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

Authors:
; ;  [1];  [2]
  1. School of Space and Environment, Beihang University, Beijing (China)
  2. School of Electronic Information, Wuhan University, Wuhan (China)
Publication Date:
OSTI Identifier:
22598976
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 23; Journal Issue: 6; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMPLITUDES; COMPRESSION; CYCLOTRONS; ELECTRON LOSS; ELECTRON PRECIPITATION; ELECTRONS; EMISSION; HELIUM; HYDROGEN; L-MODE PLASMA CONFINEMENT; MEV RANGE 01-10; PARTICLE INTERACTIONS; RELATIVISTIC RANGE; SIMULATION; SOLAR WIND; SPECTRAL DENSITY

Citation Formats

Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn, Yu, J., Cao, J. B., and Yuan, Z. G. Compression-amplified EMIC waves and their effects on relativistic electrons. United States: N. p., 2016. Web. doi:10.1063/1.4953899.
Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn, Yu, J., Cao, J. B., & Yuan, Z. G. Compression-amplified EMIC waves and their effects on relativistic electrons. United States. doi:10.1063/1.4953899.
Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn, Yu, J., Cao, J. B., and Yuan, Z. G. 2016. "Compression-amplified EMIC waves and their effects on relativistic electrons". United States. doi:10.1063/1.4953899.
@article{osti_22598976,
title = {Compression-amplified EMIC waves and their effects on relativistic electrons},
author = {Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn and Yu, J. and Cao, J. B. and Yuan, Z. G.},
abstractNote = {During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.},
doi = {10.1063/1.4953899},
journal = {Physics of Plasmas},
number = 6,
volume = 23,
place = {United States},
year = 2016,
month = 6
}
  • Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes.more » EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. In conclusion, by comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth’s outer radiation belt.« less
  • Numerical study of a loss-cone negative mass instability to amplify whistler waves by energetic electrons in the radiation belts is presented. The results show that a very low intensity whistler wave can be amplified by 50 keV electrons more than 25 dB, consistent with the Siple experimental result [Helliwell et al., J. Geophys. Res. 85, 3360 (1980)]. The dependencies of the amplification factor on the energetic electron density and on the initial wave intensity are evaluated. It is shown that the amplification factor decreases as the initial wave intensity increases. However, this gain can still exceed 15 dB for amore » 30 dB increase of the initial wave intensity, which is needed for the purpose of precipitating MeV electrons in the radiation belts. We then show that there exists a double resonance situation, by which, as an example, a wave is simultaneously in cyclotron resonance with 50 keV electrons as well as with 1.5 MeV electrons; the wave is first amplified by 50 keV electrons and then precipitates 1.5 MeV electrons. With the aid of the cyclotron resonance, the threshold field for the commencement of chaos in the electron trajectories is reduced considerably from that for a general case. Pitch angle scattering of 1.5 MeV electrons is demonstrated. The results show that a whistler wave with magnetic field amplitude of 0.08% of the background magnetic field can scatter electrons from an initial pitch angle of 86.5 deg. to a pitch angle <50 deg.« less
  • We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolutionmore » of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.« less
  • Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electronsmore » at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the EMIC waves, wave properties, electron minimum resonant energy E min, and electron pitch angle diffusion coefficient D αα of a sample EMIC wave packet are examined along with solar wind plasma and interplanetary magnetic field parameters, geomagnetic activity, and results from the spectral analysis of the BARREL balloon observations to investigate the two types of events. The events occurred in the early main phase of a moderate storm (min. Dst* = -51.0 nT). The EMIC wave event consists of two parts. Finally, unlike the first part, the second part of the EMIC wave event was locally generated and still in its source region. It is found that the REP event is likely associated with the EMIC wave event.« less
  • Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less