skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4961421· OSTI ID:22598881

In materials printing applications, the ability to generate fine droplets is critical for achieving high-resolution features. Other desirable characteristics are high print speeds, large stand-off distances, and minimal instrumentation requirements. In this work, a tunable electrohydrodynamic (EHD) printing technique capable of generating micron-sized droplets is reported. This method was used to print organic resistors on flat and uneven substrates. These ubiquitous electronic components were built using the commercial polymer-based conductive ink poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), which has been widely used in the manufacturing of organic electronic devices. Resistors with widths from 50 to 500 μm and resistances from 1 to 70 Ω/μm were created. An array of emission modes for EHD printing was identified. Among these, the most promising is the microdripping mode, where droplets 10 times smaller than the nozzle's inner diameter were created at frequencies in excess of 5 kHz. It was found that the ink flow rate, applied voltage, and stand-off distance all significantly influence the droplet generation frequency. In particular, the experimental results reveal that the frequency increases nonlinearly with the applied voltage. The non-Newtonian shear thinning behavior of PEDOT:PSS strongly influenced the droplet frequency. Finally, the topology of a 3-dimensional target substrate had a significant effect on the structure and function of a printed resistor.

OSTI ID:
22598881
Journal Information:
Journal of Applied Physics, Vol. 120, Issue 8; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English