skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [1];  [1]
  1. Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.

OSTI ID:
22598719
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 473, Issue 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English