skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals

Abstract

In this paper, we present a large-volume (non-micro) atmospheric pressure glow plasma capable of rapid, large-scale zinc oxide nanocrystal synthesis and deposition (up to 400 μg/min), whereas in the majority of the literature, nanoparticles are synthesized using micro-scale or filamentary plasmas. The reactor is an RF dielectric barrier discharge with a non-uniform gap spacing. This design encourages pre-ionization during the plasma breakdown, making the discharge uniform over a large volume. The produced zinc oxide nanocrystals typically have diameters ranging from 4 to 15 nm and exhibit photoluminescence at ≈550 nm and localized surface plasmon resonance at ≈1900 cm{sup −1} due to oxygen vacancies. The particle size can be tuned to a degree by varying the gas temperature and the precursor mixing ratio.

Authors:
; ; ;  [1];  [2]
  1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
  2. Department of Chemical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
Publication Date:
OSTI Identifier:
22596661
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 119; Journal Issue: 24; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATMOSPHERIC PRESSURE; BREAKDOWN; DEPOSITION; DIELECTRIC MATERIALS; IONIZATION; MIXING; MIXING RATIO; NANOPARTICLES; NANOSTRUCTURES; OXYGEN; PARTICLE SIZE; PHOTOLUMINESCENCE; PLASMA; PLASMONS; PRECURSOR; RESONANCE; SURFACES; SYNTHESIS; VACANCIES; ZINC OXIDES

Citation Formats

Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, Greenberg, B. L., Yang, J., Kortshagen, U. R., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, and Aydil, E. S. Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals. United States: N. p., 2016. Web. doi:10.1063/1.4954323.
Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, Greenberg, B. L., Yang, J., Kortshagen, U. R., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, & Aydil, E. S. Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals. United States. doi:10.1063/1.4954323.
Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, Greenberg, B. L., Yang, J., Kortshagen, U. R., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu, and Aydil, E. S. Tue . "Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals". United States. doi:10.1063/1.4954323.
@article{osti_22596661,
title = {Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals},
author = {Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu and Greenberg, B. L. and Yang, J. and Kortshagen, U. R., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu and Aydil, E. S.},
abstractNote = {In this paper, we present a large-volume (non-micro) atmospheric pressure glow plasma capable of rapid, large-scale zinc oxide nanocrystal synthesis and deposition (up to 400 μg/min), whereas in the majority of the literature, nanoparticles are synthesized using micro-scale or filamentary plasmas. The reactor is an RF dielectric barrier discharge with a non-uniform gap spacing. This design encourages pre-ionization during the plasma breakdown, making the discharge uniform over a large volume. The produced zinc oxide nanocrystals typically have diameters ranging from 4 to 15 nm and exhibit photoluminescence at ≈550 nm and localized surface plasmon resonance at ≈1900 cm{sup −1} due to oxygen vacancies. The particle size can be tuned to a degree by varying the gas temperature and the precursor mixing ratio.},
doi = {10.1063/1.4954323},
journal = {Journal of Applied Physics},
number = 24,
volume = 119,
place = {United States},
year = {Tue Jun 28 00:00:00 EDT 2016},
month = {Tue Jun 28 00:00:00 EDT 2016}
}