skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

Journal Article · · Review of Scientific Instruments
DOI:https://doi.org/10.1063/1.4960813· OSTI ID:22596497
; ; ; ; ;  [1]
  1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation with a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).

OSTI ID:
22596497
Journal Information:
Review of Scientific Instruments, Vol. 87, Issue 11; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0034-6748
Country of Publication:
United States
Language:
English