skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification

Journal Article · · Biochemical and Biophysical Research Communications
 [1]; ; ;  [1]; ;  [2];  [1]
  1. Division of Neurogenetics, Center of Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan)
  2. Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya (Japan)

Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca{sup 2+} signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. - Highlights: • Rspo2 is a secreted activator of Wnt, and its knockout shows extended proliferating chondrocytes in endochondral ossification. • In proliferating chondrocytes of Rspo2-knockout mice, Sox9 and collagen type 2 are increased and β-catenin is decreased. • Rspo2 and its receptor Lgr5, as well as Sox9 and collagen type 2, are expressed in differentiating ATDC5 chondrogenic cells. • In ATDC5 cells, Rspo2 decreases expressions of Sox9, collagen type 2, and aggrecan through Wnt/β-catenin signaling. • We propose that Rspo2 activates Wnt/β-catenin to facilitate chondrocyte differentiation in endochondral ossification.

OSTI ID:
22596347
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 473, Issue 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

SLIT3 regulates endochondral ossification by β-catenin suppression in chondrocytes
Journal Article · Sat Dec 15 00:00:00 EST 2018 · Biochemical and Biophysical Research Communications · OSTI ID:22596347

Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice
Journal Article · Fri Oct 26 00:00:00 EDT 2012 · Biochemical and Biophysical Research Communications · OSTI ID:22596347

The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation
Journal Article · Sat Aug 01 00:00:00 EDT 2009 · Experimental Cell Research · OSTI ID:22596347