skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid metal actuation by electrical control of interfacial tension

Journal Article · · Applied Physics Reviews
DOI:https://doi.org/10.1063/1.4959898· OSTI ID:22594411

By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm length scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.

OSTI ID:
22594411
Journal Information:
Applied Physics Reviews, Vol. 3, Issue 3; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 1931-9401
Country of Publication:
United States
Language:
English