skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

Abstract

Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, andmore » 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil. - Highlights: • A discussion is made on performing regionalized impact assessments using spatial differentiation in LCA. • A review is made of 20 characterization models for land use impacts in Life Cycle Impact Assessment. • Four characterization models are recommended according to different land use impact pathways for application in Brazil.« less

Authors:
 [1];  [1];  [2]
  1. Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil)
  2. (Brazil)
Publication Date:
OSTI Identifier:
22589264
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Impact Assessment Review; Journal Volume: 60; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; BRAZIL; ENVIRONMENTAL IMPACTS; LAND USE; LIFE CYCLE ASSESSMENT; SIMULATION

Citation Formats

Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com, Ometto, Aldo Roberto, and Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil. United States: N. p., 2016. Web. doi:10.1016/J.EIAR.2016.05.001.
Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com, Ometto, Aldo Roberto, & Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil. United States. doi:10.1016/J.EIAR.2016.05.001.
Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com, Ometto, Aldo Roberto, and Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP. 2016. "Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil". United States. doi:10.1016/J.EIAR.2016.05.001.
@article{osti_22589264,
title = {Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil},
author = {Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com and Ometto, Aldo Roberto and Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP},
abstractNote = {Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil. - Highlights: • A discussion is made on performing regionalized impact assessments using spatial differentiation in LCA. • A review is made of 20 characterization models for land use impacts in Life Cycle Impact Assessment. • Four characterization models are recommended according to different land use impact pathways for application in Brazil.},
doi = {10.1016/J.EIAR.2016.05.001},
journal = {Environmental Impact Assessment Review},
number = ,
volume = 60,
place = {United States},
year = 2016,
month = 9
}
  • Cited by 1
  • Estimates of the amount of land used for a defined amount of utility-scale electricity generation in the solar power industry, referred to as solar land use energy intensity (LUEI), are important to decision makers for evaluating the environmental impact of energy technology choices. In general, solar energy tends to have a larger on-site LUEI than that of fossil fuels because the energy generated per square meter of power plant area is much lower. Unfortunately, there are few studies that quantify the off-site LUEI for utility-scale solar energy, and of those that do, they share common methodologies and data sets. Inmore » this study, we develop a new method for calculating the off-site LUEI for utility-scale solar energy for three different technologies: silicon photovoltaic (Si-PV), cadmium-telluride (CdTe) PV, and parabolic trough concentrated solar thermal. Our results indicate that the off-site LUEI is most likely 1% or less of the on-site LUEI for each technology. Although our results have some inherent uncertainties, they fall within an order of magnitude of other estimates in the literature.« less
  • Land models are valuable tools to understand the dynamics of global carbon (C) cycle. Various models have been developed and used for predictions of future C dynamics but uncertainties still exist. Diagnosing the models’ behaviors in terms of structures can help to narrow down the uncertainties in prediction of C dynamics. In this study three widely used land surface models, namely CSIRO’s Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools were driven by themore » observed meteorological forcing. The simulated C storage and residence time were used for analysis. The C storage and residence time were computed globally for all individual soil and plant pools, as well as net primary productivity (NPP) and its allocation to different plant components’ based on these models. Remotely sensed NPP and statistically derived HWSD, and GLC2000 datasets were used as a reference to evaluate the performance of these models. Results showed that CABLE exhibited better agreement with referenced C storage and residence time for plant and soil pools, as compared with CLM-CASA and CLM4. CABLE had longer bulk residence time for soil C pools and stored more C in roots, whereas, CLM-CASA and CLM4 stored more C in woody pools due to differential NPP allocation. Overall, these results indicate that the differences in C storage and residence times in three models are largely due to the differences in their fundamental structures (number of C pools), NPP allocation and C transfer rates. Our results have implications in model development and provide a general framework to explain the bias/uncertainties in simulation of C storage and residence times from the perspectives of model structures.« less
  • Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurfacemore » flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.« less