skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anodic electrochemical performances of MgCo{sub 2}O{sub 4} synthesized by oxalate decomposition method and electrospinning technique for Li-ion battery application

Journal Article · · Materials Research Bulletin
 [1];  [2];  [1];  [2];  [3]
  1. School of Mechanical and Building Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu (India)
  2. Department of Mechanical Engineering, National University of Singapore, 117576 (Singapore)
  3. Department of Physics, National University of Singapore, 117542 (Singapore)

Highlights: • MgCo{sub 2}O{sub 4} was prepared by oxalate decomposition method and electrospinning technique. • Electrospun MgCo{sub 2}O{sub 4} shows the reversible capacity of 795 and 227 mAh g{sup −1} oxalate decomposition MgCo{sub 2}O{sub 4} after 50 cycle. • Electrospun MgCo{sub 2}O{sub 4} show good cycling stability and electrochemical performance. - Abstract: Magnesium cobalt oxide, MgCo{sub 2}O{sub 4} was synthesized by oxalate decomposition method and electrospinning technique. The electrochemical performances, structures, phase formation and morphology of MgCo{sub 2}O{sub 4} synthesized by both the methods are compared. Scanning electron microscope (SEM) studies show spherical and fiber type morphology, respectively for the oxalate decomposition and electrospinning method. The electrospun nanofibers of MgCo{sub 2}O{sub 4} calcined at 650 °C, showed a very good reversible capacity of 795 mAh g{sup −1} after 50 cycles when compared to bulk material capacity of 227 mAh g{sup −1} at current rate of 60 mA g{sup −1}. MgCo{sub 2}O{sub 4} nanofiber showed a reversible capacity of 411 mAh g{sup −1} (at cycle) at current density of 240 mA g{sup −1}. Improved performance was due to improved conductivity of MgO, which may act as buffer layer leading to improved cycling stability. The cyclic voltammetry studies at scan rate of 0.058 mV/s show main cathodic at around 1.0 V and anodic peaks at 2.1 V vs. Li.

OSTI ID:
22584275
Journal Information:
Materials Research Bulletin, Vol. 73; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English