skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of sulfurization time and H{sub 2}S concentration on electrical properties of Cu{sub 2}ZnSnS{sub 4} films prepared by sol–gel method

Journal Article · · Materials Research Bulletin
 [1];  [1]; ; ;  [1]
  1. College of Physics and Information Engineering, and Institute of Micro-Nano Devices & Solar Cells, Fuzhou University, Fuzhou 350108 (China)

Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) films were prepared by sol–gel method following sulfurization. • The sulfurization time and H{sub 2}S concentration have the effects on the electrical properties. • The tin loss is increased with the increasing of the sulfurization time. • The secondary phases like ZnS make the electrical properties worse. • The CZTS films sulfurized at 5% H{sub 2}S for 90 min had the best electrical properties. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully deposited by a sol–gel method and sulfurization process. The properties of the films were investigated by varying sulfurization time and H{sub 2}S concentration. X-ray diffraction and Raman spectra analyses revealed the formation of CZTS films with a tetragonal type kesterite structure. With increasing the sulfurization time and H{sub 2}S concentration, the intensity of the kesterite (1 1 2) peak became sharper. The stoichiometric ratios of the CZTS films were different from the precursors, which was due to Sn loss during the sulfurization process. The electrical resistivity and mobility of the films increased while the carrier concentration decreased with increasing the sulfurization time. The CZTS thin films sulfurized at 5% H{sub 2}S concentration for 90 min had the best opto-electrical properties with E{sub g} of 1.41 eV, resistivity of 3.64 Ω cm, carrier concentration of 1.11 × 10{sup 18} cm{sup −3} and mobility of 1.54 cm{sup 2}/(V s) at room temperature for PV application.

OSTI ID:
22584255
Journal Information:
Materials Research Bulletin, Vol. 73; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English