skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2];  [3]
  1. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
  2. National Institute of Clean-and-Low-Carbon Energy, Beijing 102209 (China)
  3. School of Chemistry, University of St. Andrews, St. Andrews, Fite KY16 9ST (United Kingdom)

Highlights: • CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles display different behavior within CMK-3. • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} show various electrochemical properties • CMK-3-CeO{sub 2} and Co{sub 3}O{sub 4} are further wrapped by graphene nanosheets. • Graphene-encapsulated composites show better electrochemical performances. - Abstract: As a novel anode material for lithium-ion batteries, CeO{sub 2} displays imperceptible volumetric and morphological changes during the lithium insertion and extraction processes, and thereby exhibits good cycling stability. However, the low theoretical capacity and poor electronic conductivity of CeO{sub 2} hinder its practical application. In contrast, Co{sub 3}O{sub 4} possesses high theoretical capacity, but undergoes huge volume change during cycling. To overcome these issues, CeO{sub 2} and Co{sub 3}O{sub 4} nanoparticles are formed inside the pores of CMK-3 and display various electrochemical behaviors due to the different morphological structures of CeO{sub 2} and Co{sub 3}O{sub 4} within CMK-3. Moreover, the graphene/metal oxide/CMK-3 composites with a hierarchical structure are then prepared and exhibit better electrochemical performances than metal oxides with or without CMK-3. This novel synthesis strategy is hopefully employed in the electrode materials design for Li-ion batteries or other energy conversion and storage devices.

OSTI ID:
22584251
Journal Information:
Materials Research Bulletin, Vol. 73; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English