skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

Abstract

Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{sup 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chainsmore » for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.« less

Authors:
 [1];  [1];  [2];  [1];  [2]; ; ; ;  [1]
  1. College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22584130
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 238; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMIC DISPLACEMENTS; BENZENE; CARBOXYLIC ACIDS; CRYSTAL STRUCTURE; CRYSTALS; LIGANDS; NICKEL; POLYMERS; PROPANE; SYMMETRY; WATER

Citation Formats

Wang, Chao, Zhao, Jun, E-mail: junzhao08@126.com, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Xia, Liang, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Wu, Xue-Qian, Wang, Jian-Fang, Dong, Wen-Wen, and Wu, Ya-Pan. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands. United States: N. p., 2016. Web. doi:10.1016/J.JSSC.2016.03.049.
Wang, Chao, Zhao, Jun, E-mail: junzhao08@126.com, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Xia, Liang, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Wu, Xue-Qian, Wang, Jian-Fang, Dong, Wen-Wen, & Wu, Ya-Pan. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands. United States. doi:10.1016/J.JSSC.2016.03.049.
Wang, Chao, Zhao, Jun, E-mail: junzhao08@126.com, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Xia, Liang, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, Wu, Xue-Qian, Wang, Jian-Fang, Dong, Wen-Wen, and Wu, Ya-Pan. Wed . "Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands". United States. doi:10.1016/J.JSSC.2016.03.049.
@article{osti_22584130,
title = {Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands},
author = {Wang, Chao and Zhao, Jun, E-mail: junzhao08@126.com and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 and Xia, Liang and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 and Wu, Xue-Qian and Wang, Jian-Fang and Dong, Wen-Wen and Wu, Ya-Pan},
abstractNote = {Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{sup 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.},
doi = {10.1016/J.JSSC.2016.03.049},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 238,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}