skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

Journal Article · · Materials Research Bulletin

Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.

OSTI ID:
22581624
Journal Information:
Materials Research Bulletin, Vol. 81; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English