Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effects of titanium nanoparticles on self-cleaning and structural features of zinc-magnesium-phosphate glass

Journal Article · · Materials Research Bulletin

Graphical abstract: Water contact angle for sample S2, S3, S4 and S5. The water contact angle increased with increased the titanium NPs content (mol%). - Highlights: • ZnO–MgO–P{sub 2}O{sub 5} embedded TiO{sub 2} NPs prepared by conventional melt-quenching method. • The amorphous nature is confirmed by X-ray diffraction spectroscopy. • The structural characteristics of glasses is investigated using FTIR and Raman. • Wettability of the glasses surface by water contact angle. - Abstract: The loss of glass transparency on surface pollutants contamination unless inhibited not only causes vision obscurity but also responsible for major aesthetic damages of cultural heritage. It is due to the sticking of fine dirt particles on wetting layers, a complex process with several possible ramifications still to be clarified. We report the influence of titanium dioxide or titania (TiO{sub 2}) nanoparticles (NPs) on the structural and self-cleaning properties of zinc–magnesium–phosphate glasses. Following melt-quenching method glass samples of optimized composition (42 − x)P{sub 2}O{sub 5}–8MgO–50ZnO–xTiO{sub 2} with x = 0, 1, 2, 3 and 4 mol% are prepared. XRD patterns verified their amorphous nature and TEM images revealed the nucleation of TiO{sub 2} NPs of average diameter ≈4.05 ± 0.01 nm. Fourier transform infrared (FTIR) spectra displayed four absorption band centred at 1618–3438 cm{sup −1}, 902– 931 cm{sup −1}, 757–762 cm{sup −1} and 531–560 cm{sup −1}. Raman spectra exhibited four peaks each accompanied by a blue-shift. Water contact angle is found to increase with the increase of titanium NPs concentration into the amorphous matrix. This knowledge can be used to set up strategies and selective treatments to preventing glass transparency loss via the modification of self-cleaning attributes.

OSTI ID:
22581453
Journal Information:
Materials Research Bulletin, Journal Name: Materials Research Bulletin Vol. 74; ISSN MRBUAC; ISSN 0025-5408
Country of Publication:
United States
Language:
English