skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near white light emitting ZnAl{sub 2}O{sub 4}:Dy{sup 3+} nanocrystals: Sol–gel synthesis and luminescence studies

Journal Article · · Materials Research Bulletin

Highlights: • ZnAl{sub 2}O{sub 4}:Dy{sup 3+} spinel synthesized using sol–gel method. • Characterized by XRD, SEM and PL spectroscopy. • Investigations of emission, excitation and lifetime properties. • Evaluation of defect centers and trap parameters of the system. • Evaluation of CIE indices of near white light emitting phosphor. - Abstract: ZnAl{sub 2}O{sub 4}:Dy{sup 3+} nanoparticles were synthesized using citrate sol–gel method and characterized systematically using X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy. Emission spectrum of pure ZnAl{sub 2}O{sub 4} shows intense violet blue emission under ultra violet irradiation. Based on electron paramagnetic resonance (EPR) results; it was attributed to presence of singly ionized oxygen vacancy centres in ZnAl{sub 2}O{sub 4}. On doping Dy{sup 3+} in ZnAl{sub 2}O{sub 4}, complete host–dopant energy transfer does not take place. Local structural investigation and lifetime measurements reveal that dysprosium ion is distributed between both Zn{sup 2+} and Al{sup 3+} sites. Near white light from ZnAl{sub 2}O{sub 4}:Dy{sup 3+} is attributed to combined host and dopant luminescence. The trap parameters such as activation energy (E) and frequency factor (s) for TSL glow peak 165 °C were determined using different heating rate method. Thermally stimulated emission showed the presence of oxygen related defect centre.

OSTI ID:
22581421
Journal Information:
Materials Research Bulletin, Vol. 74; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English