skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technical Note: On the calculation of stopping-power ratio for stoichiometric calibration in proton therapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4928399· OSTI ID:22581356
 [1]; ; ;  [2];  [3]
  1. Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm SE-17176 (Sweden)
  2. Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden)
  3. Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden)

Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2) simple Bragg additivity can be reasonably assumed for compound materials; (3) if simple Bragg additivity is assumed, then the I-value for water should be calculated in a consistent manner to that of the tissue of interest (rather than using an experimentally derived value); (4) the ICRU Report 37 I-values may provide a better agreement with experiment than Janni’s tables.

OSTI ID:
22581356
Journal Information:
Medical Physics, Vol. 42, Issue 9; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English