skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reference respiratory waveforms by minimum jerk model analysis

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4927557· OSTI ID:22581347
; ; ; ; ;  [1];  [2]
  1. Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita-shi, Osaka 565-0871 (Japan)
  2. Department of Medical Technology, Osaka University Hospital, Yamadaoka 2-15, Suita-shi, Osaka 565-0871 (Japan)

Purpose: CyberKnife{sup ®} robotic surgery system has the ability to deliver radiation to a tumor subject to respiratory movements using Synchrony{sup ®} mode with less than 2 mm tracking accuracy. However, rapid and rough motion tracking causes mechanical tracking errors and puts mechanical stress on the robotic joint, leading to unexpected radiation delivery errors. During clinical treatment, patient respiratory motions are much more complicated, suggesting the need for patient-specific modeling of respiratory motion. The purpose of this study was to propose a novel method that provides a reference respiratory wave to enable smooth tracking for each patient. Methods: The minimum jerk model, which mathematically derives smoothness by means of jerk, or the third derivative of position and the derivative of acceleration with respect to time that is proportional to the time rate of force changed was introduced to model a patient-specific respiratory motion wave to provide smooth motion tracking using CyberKnife{sup ®}. To verify that patient-specific minimum jerk respiratory waves were being tracked smoothly by Synchrony{sup ®} mode, a tracking laser projection from CyberKnife{sup ®} was optically analyzed every 0.1 s using a webcam and a calibrated grid on a motion phantom whose motion was in accordance with three pattern waves (cosine, typical free-breathing, and minimum jerk theoretical wave models) for the clinically relevant superior–inferior directions from six volunteers assessed on the same node of the same isocentric plan. Results: Tracking discrepancy from the center of the grid to the beam projection was evaluated. The minimum jerk theoretical wave reduced the maximum-peak amplitude of radial tracking discrepancy compared with that of the waveforms modeled by cosine and typical free-breathing model by 22% and 35%, respectively, and provided smooth tracking for radial direction. Motion tracking constancy as indicated by radial tracking discrepancy affected by respiratory phase was improved in the minimum jerk theoretical model by 7.0% and 13% compared with that of the waveforms modeled by cosine and free-breathing model, respectively. Conclusions: The minimum jerk theoretical respiratory wave can achieve smooth tracking by CyberKnife{sup ®} and may provide patient-specific respiratory modeling, which may be useful for respiratory training and coaching, as well as quality assurance of the mechanical CyberKnife{sup ®} robotic trajectory.

OSTI ID:
22581347
Journal Information:
Medical Physics, Vol. 42, Issue 9; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English