skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Construction of New Coordination Polymers from 4’-(2,4-disulfophenyl)- 3,2’:6’3”-terpyridine: Polymorphism, pH-dependent syntheses, structures, and properties

Journal Article · · Journal of Solid State Chemistry
; ; ;  [1];  [1];  [1];  [1]
  1. School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

Nine new coordination compounds, namely, [Co(HDSPTP){sub 2}(H{sub 2}O){sub 4}]·4H{sub 2}O (H{sub 2}DSPTP=4’-(2,4-disulfophenyl)-3,2’:6’3”-terpyridine, 1 and 2), {[Ni(DSPTP)(H_2O)_4]·3H_2O}{sub n} (3), {[Cu(HDSPTP)_2(H_2O)_3]·8H_2O}{sub n} (4), {[Cu(HDSPTP)_2(H_2O)_3]·6H_2O}{sub n} (5), {[Cu(DSPTP)(H_2O)_2]·H_2O}{sub n} (6), {[Zn(DSPTP)(H_2O)_2]·2H_2O}{sub n} (7), {[Cd(DSPTP)(H_2O)_2]·2H_2O}{sub n} (8), and [Ag{sub 2}(DSPTP)(H{sub 2}O)]{sub n} (9), were constructed based on a new ligand containing both terpyridyl and sulfo groups. The reactions of H{sub 2}DSPTP with Co(NO{sub 3}){sub 2}.6H{sub 2}O resulted in two mononuclear complexes (compounds 1 and 2). They are polymorphisms that display different hydrogen bonding networks. They are selectively synthesized by altering the added alkalis. The reaction of H{sub 2}DSPTP with Ni(NO{sub 3}){sub 2}·6H{sub 2}O resulted in a 1D “S-shaped” coordination chain (compound 3). The reactions of Cu(II) with H{sub 2}DSPTP at different pH value resulted in the following three compounds: two kinds of 1D chains obtained at pH 3.0 and 4.0 for compounds 4 and 5, respectively, and a 3D framework based on binuclear ring units with 4-connected sra topology (Compound 6). The reactions of H{sub 2}DSPTP with ds-block ions resulted in the following three compounds: a Zn(II) (compound 7) and a Cd(II) (compound 8) 3D frameworks with structures similar to that in compound 6, and a 3D framework based on tetranuclear Ag(I) SBUs with binodal (4,8)-connected flu type 3D framework topology. The structural diversity is mainly attributed to the rich coordination modes (from monodentate to µ{sub 7}-mode) and conformations (cis–cis and cis–trans) of HDSPTP{sup −}/DSPTP{sup 2−} ligands and the metal center and can be controllable synthesized by altering the alkalis, and pH value. Thermal stability of all compounds was performed, and the thermal behaviors of compounds 6 and 8 were further explored by PXRD. Compound 6 exhibits low thermal stability and undergo a crystalline–crystalline-amorphous phase transition as temperature increases from 25 °C to 200 °C, and show amorphous–crystalline phase transition when rehydrated. However, compound 8 exhibits high thermal stability above 500 °C. Its crystalline phase can retain above 300 °C and undergo a crystalline–crystalline phase transition as temperature increased to 400 °C, and transit back to compound 8 when rehydrated. Moreover, luminescence properties of compounds 7–9 were also investigated. - Graphical abstract: Series of coordination compounds based on a new terpyridine-based ligand, 4’-(2,4-disulfophenyl)-3,2’:6’3’’-terpyridine, were constructed. The syntheses, structural diversity, thermal stability, phase transition, and luminescent properties of selected compounds were explored. - Highlights: • Nine coordination polymers based on a new terpyridine-based ligand were obtained. • Both metal ion and coordination modes of H2DSPTP affect the structural diversity. • The Co(II) compounds are polymorphisms. • The pH-dependent syntheses of Cu(II) compounds were observed. • Compounds 6 and 8 exhibit phase transmission as temperature increased.

OSTI ID:
22577762
Journal Information:
Journal of Solid State Chemistry, Vol. 233; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English