skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours

Abstract

Purpose: To evaluate forward and inverse planning methods for acoustic neuroma cases treated in Gamma Knife Perfexion. Methods: Five patients with acoustic neuroma tumour abutting brainstem were planned twice in LGP TPS (Version 10.1) using TMR10 algorithm. First plan was entirely based on forward planning (FP) in which each shot was chosen manually. Second plan was generated using inverse planning (IP) for which planning parameters like coverage, selectivity, gradient index (GI) and beam-on time threshold were set. Number of shots in IP was automatically selected by objective function using iterative process. In both planning methods MRI MPRAGE sequence images were used for tumour localization and planning. A planning dose of 12Gy at 50% isodose level was chosen. Results and Discussion: Number of shots used in FP was greater than IP and beam-on time in FP was in average 1.4 times more than IP. One advantage of FP was that the brainstem volume subjected to 6Gy dose (25% isodose) was less in FP than IP. Our results showed use of more number of shots as in FP results in GI less than or equal to 2.55 which is close to its lower limit. Dose homogeneity index (DHI) analysis of FP andmore » IP showed average values of 0.59 and 0.67 respectively. General trend in GK for planning in acoustic neuroma cases is to use small collimator shots to avoid dose to adjacent critical structures. More number of shots and prolonged treatment time causes inconvenience to the patients. Similarly overuse of automatic shot shaping as in IP results in increased scatter dose. A compromise is required in shot selection for these cases. Conclusion: IP method could be used in acoustic neuroma cases to decrease treatment time provided the source sector openings near brainstem are shielded or adjusted appropriately to reduce brainstem dose.« less

Authors:
; ; ; ; ; ;  [1]
  1. All India Institute of Medical Sciences, New Delhi (India)
Publication Date:
OSTI Identifier:
22545149
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALGORITHMS; COLLIMATORS; ITERATIVE METHODS; NEOPLASMS; NMR IMAGING; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SURGERY

Citation Formats

Gopishankar, N, Agarwal, Priyanka, Bisht, Raj Kishor, Kale, S S, Rath, G K, Chander, S, and Sharma, B S. SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours. United States: N. p., 2015. Web. doi:10.1118/1.4924375.
Gopishankar, N, Agarwal, Priyanka, Bisht, Raj Kishor, Kale, S S, Rath, G K, Chander, S, & Sharma, B S. SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours. United States. doi:10.1118/1.4924375.
Gopishankar, N, Agarwal, Priyanka, Bisht, Raj Kishor, Kale, S S, Rath, G K, Chander, S, and Sharma, B S. Mon . "SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours". United States. doi:10.1118/1.4924375.
@article{osti_22545149,
title = {SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours},
author = {Gopishankar, N and Agarwal, Priyanka and Bisht, Raj Kishor and Kale, S S and Rath, G K and Chander, S and Sharma, B S},
abstractNote = {Purpose: To evaluate forward and inverse planning methods for acoustic neuroma cases treated in Gamma Knife Perfexion. Methods: Five patients with acoustic neuroma tumour abutting brainstem were planned twice in LGP TPS (Version 10.1) using TMR10 algorithm. First plan was entirely based on forward planning (FP) in which each shot was chosen manually. Second plan was generated using inverse planning (IP) for which planning parameters like coverage, selectivity, gradient index (GI) and beam-on time threshold were set. Number of shots in IP was automatically selected by objective function using iterative process. In both planning methods MRI MPRAGE sequence images were used for tumour localization and planning. A planning dose of 12Gy at 50% isodose level was chosen. Results and Discussion: Number of shots used in FP was greater than IP and beam-on time in FP was in average 1.4 times more than IP. One advantage of FP was that the brainstem volume subjected to 6Gy dose (25% isodose) was less in FP than IP. Our results showed use of more number of shots as in FP results in GI less than or equal to 2.55 which is close to its lower limit. Dose homogeneity index (DHI) analysis of FP and IP showed average values of 0.59 and 0.67 respectively. General trend in GK for planning in acoustic neuroma cases is to use small collimator shots to avoid dose to adjacent critical structures. More number of shots and prolonged treatment time causes inconvenience to the patients. Similarly overuse of automatic shot shaping as in IP results in increased scatter dose. A compromise is required in shot selection for these cases. Conclusion: IP method could be used in acoustic neuroma cases to decrease treatment time provided the source sector openings near brainstem are shielded or adjusted appropriately to reduce brainstem dose.},
doi = {10.1118/1.4924375},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To find out the dose difference on targets and organs at risk for the treatment of acoustic schwannoma if the inhomogeneity correction (Convolution algorithm) is applied. Methods: Images of patients treated for acoustic schwannoma with Gamma Knife using TMR 10 algorithm were retrieved from database and replanned with Convolution and TMR 10 algorithm respectively. These patients were treated using a preplan scheme in following: (1) Before the actual treatment day, using the MRI image that was taken without a head frame on the patient's skull, a pre-treatment plan was made based on the default skull coordinates in the Gammamore » Knife treatment planning system (LGP); (2) then on treatment day, a head frame was placed on the patient's skull, and a CT image was taken. The CT image with head frame was registered and fused with the completed preplan; (3) the treatment plan was finalized and the treatment was delivered. To find out the dosimetry impact of inhomogeneity correction, we used the retrieved CT images to replan the treatment using Convolution algorithm in LGP software version 10.1.1. The dose distributions and the dose volume histograms for targets and OARs were compared for these two dose calculation algorithms. Results: The dose calculated with the Convolution algorithm in general is slightly lower than the one from TMR 10 around the boney area. The effect from the inhomogeneity correction is observable but not significant, and varies with the location of the tumor. Conclusion: Inhomogeneity correction slightly improve the dose accuracy for acoustic schwannoma Gamma Knife treatments although the correction may not be very significant. Our Result provides evidence for dose prescription adjustment to treat acoustic schwannoma. The actual clinical outcome of switching from using TMR10 to using Convolution needs to be further investigated.« less
  • Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions weremore » created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC.« less
  • Purpose: Aim of the study is to evaluate mechanical and radiological accuracy of multi-fraction regimen and validate Gamma knife based fractionation using newly developed patient simulating multipurpose phantom. Methods: A patient simulating phantom was designed to verify fractionated treatments with extend system (ES) of Gamma Knife however it could be used to validate other radiotherapy procedures as well. The phantom has options to insert various density material plugs and mini CT/MR distortion phantoms to analyze the quality of stereotactic imaging. An additional thorax part designed to predict surface doses at various organ sites. The phantom was positioned using vacuum headmore » cushion and patient control unit for imaging and treatment. The repositioning check tool (RCT) was used to predict phantom positioning under ES assembly. The phantom with special inserts for film in axial, coronal and sagittal plane were scanned with X-Ray CT and the acquired images were transferred to treatment planning system (LGP 10.1). The focal precession test was performed with 4mm collimator and an experimental plan of four 16mm collimator shots was prepared for treatment verification of multi-fraction regimen. The prescription dose of 5Gy per fraction was delivered in four fractions. Each fraction was analyzed using EBT3 films scanned with EPSON 10000XL Scanner. Results: The measurement of 38 RCT points showed an overall positional accuracy of 0.28mm. The mean deviation of 0.28% and 0.31 % were calculated as CT and MR image distortion respectively. The radiological focus accuracy test showed its deviation from mechanical center point of 0.22mm. The profile measurement showed close agreement between TPS planned and film measured dose. At tolerance criteria of 1%/1mm gamma index analysis showed a pass rate of > 95%. Conclusion: Our results show that the newly developed multipurpose patient simulating phantom is highly suitable for the verification of fractionated stereotactic radiosurgery using ES of Gamma knife. The study is a part of intramural research project of Research Section, All India Institute of Medical Sciences New Delhi India (A 247)« less
  • Purpose: The present study aimed to compare the incidence risk of a secondary cancer from therapeutic doses in patients receiving intensitymodulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS). Methods: Four acoustic neuroma patients were treated with IMRT, VMAT, or SRS. Their incidnece excess relative risk (ERR), excess absolute risk (EAR), and lifetime attributable risk (LAR) were estimated using the corresponding therapeutic doses measured at various organs by radio-photoluminescence glass dosimeters (RPLGD) placed inside a humanoid phantom. Results: When a prescription dose was delivered in the planning target volume of the 4 patients, the average organ equivalentmore » doses (OED) at the thyroid, lung, normal liver, colon, bladder, prostate (or ovary), and rectum were measured. The OED decreased as the distance from the primary beam increased. The thyroid received the highest OED compared to other organs. A LAR were estimated that more than 0.03% of AN patients would get radiation-induced cancer. Conclusion: The tyroid was highest radiation-induced cancer risk after radiation treatment for AN. We found that LAR can be increased by the transmitted dose from the primary beam. No modality-specific difference in radiation-induced cancer risk was observed in our study.« less
  • Purpose: To improve Gamma Knife SRS treatment efficiency for brain metastases and compare the differences of treatment time and radiobiological effects between two different planning methods of automatic filling and manual placement of shots with inverse planning. Methods: T1-weighted MRI images with gadolinium contrast from five patients with a single brain metastatic-lesion were used in this retrospective study. Among them, two were from primary breast cancer, two from primary melanoma cancer and one from primary prostate cancer. For each patient, two plans were generated in Leksell GammaPlan10.1.1 for radiosurgical treatment with a Leksell GammaKnife Perfexion machine: one with automatic filling,more » automatic sector configuration and inverse optimization (Method1); and the other with manual placement of shots, manual setup of collimator sizes, manual setup of sector blocking and inverse optimization (Method2). Dosimetric quality of the plans was evaluated with parameters of Coverage, Selectivity, Gradient-Index and DVH. Beam-on Time, Number-of-Shots and Tumor Control Probability(TCP) were compared for the two plans while keeping their dosimetric quality very similar. Relative reduction of Beam-on Time and Number-of-Shots were calculated as the ratios among the two plans and used for quantitative analysis. Results: With very similar dosimetric and radiobiological plan quality, plans created with Method 2 had significantly reduced treatment time. Relative reduction of Beam-on Time ranged from 20% to 51 % (median:29%,p=0.001), and reduction of Number-of-Shots ranged from 5% to 67% (median:40%,p=0.0002), respectively. Time of plan creation for Method1 and Method2 was similar, approximately 20 minutes, excluding the time for tumor delineation. TCP calculated for the tumors from differential DVHs did not show significant difference between the two plans (p=0.35). Conclusion: The method of manual setup combined with inverse optimization in LGP for treatment of brain metastatic lesions with the Perfexion can achieve significantly higher time efficiency without degrading treatment quality.« less