skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: REACTION RATES OF {sup 64}Ge(p,γ){sup 65}As AND {sup 65}As(p,γ){sup 66}Se AND THE EXTENT OF NUCLEOSYNTHESIS IN TYPE I X-RAY BURSTS

Journal Article · · Astrophysical Journal
; ; ; ; ;  [1];  [2]; ;  [3]
  1. Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
  2. Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Barcelona E-08036 (Spain)
  3. Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States)

The extent of nucleosynthesis in models of type I X-ray bursts (XRBs) and the associated impact on the energy released in these explosive events are sensitive to nuclear masses and reaction rates around the {sup 64}Ge waiting point. Using the well known mass of {sup 64}Ge, the recently measured {sup 65}As mass, and large-scale shell model calculations, we have determined new thermonuclear rates of the {sup 64}Ge(p,γ){sup 65}As and {sup 65}As(p,γ){sup 66}Se reactions with reliable uncertainties. The new reaction rates differ significantly from previously published rates. Using the new data, we analyze the impact of the new rates and the remaining nuclear physics uncertainties on the {sup 64}Ge waiting point in a number of representative one-zone XRB models. We find that in contrast to previous work, when all relevant uncertainties are considered, a strong {sup 64}Ge rp-process waiting point cannot be ruled out. The nuclear physics uncertainties strongly affect XRB model predictions of the synthesis of {sup 64}Zn, the synthesis of nuclei beyond A = 64, the energy generation, and the burst light curve. We also identify key nuclear uncertainties that need to be addressed to determine the role of the {sup 64}Ge waiting point in XRBs. These include the remaining uncertainty in the {sup 65}As mass, the uncertainty of the {sup 66}Se mass, and the remaining uncertainty in the {sup 65}As(p,γ){sup 66}Se reaction rate, which mainly originates from uncertain resonance energies.

OSTI ID:
22521564
Journal Information:
Astrophysical Journal, Vol. 818, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English