skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

Journal Article · · Astrophysical Journal
 [1]
  1. Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.

OSTI ID:
22521505
Journal Information:
Astrophysical Journal, Vol. 818, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English