skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CLOUD STRUCTURE OF THE NEAREST BROWN DWARFS. II. HIGH-AMPLITUDE VARIABILITY FOR LUHMAN 16 A AND B IN AND OUT OF THE 0.99 μm FeH FEATURE

Journal Article · · Astrophysical Journal
 [1];  [2];  [3];  [4];  [5];  [6];  [7]
  1. Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)
  2. NASA Ames Research Center, MS-245-3, Moffett Field, CA 94035 (United States)
  3. Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)
  4. Los Alamos National Laboratory, Mail Stop F663, Los Alamos, NM 87545 (United States)
  5. Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)
  6. Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States)
  7. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

The re-emergence of the 0.99 μm FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 μm FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57–531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8–1.15 μm. We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K i feature below 0.84 μm. No variations are seen across the 0.99 μm FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. We re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.

OSTI ID:
22518742
Journal Information:
Astrophysical Journal, Vol. 812, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Cited By (10)

Characterization of exoplanets from their formation: III. The statistics of planetary luminosities journal December 2017
Detection of new strongly variable brown dwarfs in the L/T transition journal September 2019
Dust in brown dwarfs and extra-solar planets: VII. Cloud formation in diffusive atmospheres journal January 2020
Simultaneous Multiwavelength Variability Characterization of the Free-floating Planetary-mass Object PSO J318.5−22 journal January 2018
Spitzer Light Curves of the Young, Planetary-mass TW Hya Members 2MASS J11193254–1137466AB and WISEA J114724.10–204021.3 journal May 2018
The Viewing Geometry of Brown Dwarfs Influences Their Observed Colors and Variability Amplitudes journal June 2017
Atmospheric Variability Driven by Radiative Cloud Feedback in Brown Dwarfs and Directly Imaged Extrasolar Giant Planets journal March 2019
Dust in brown dwarfs and extra-solar planets: I. Chemical composition and spectral appearance of quasi-static cloud layers journal April 2008
Dust in brown dwarfs and extra-solar planets: II. Cloud formation for cosmologically evolving abundances journal September 2009
Spitzer Light Curves of the Young, Planetary-Mass TW Hya Members 2MASS J11193254-1137466AB and WISEA J114724.10-204021.3 text January 2018