skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI

Abstract

Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated from reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lungmore » volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for improvements. This study is in part supported by NIH (U54CA137788 and U54CA132378)« less

Authors:
; ;  [1];  [2];  [3]
  1. Memorial Sloan Kettering Cancer Center, New York, NY (United States)
  2. City College of New York, New York, NY (United States)
  3. Mem Sloan Kettering Cancer Ctr, New York, NY (United States)
Publication Date:
OSTI Identifier:
22499340
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APPROXIMATIONS; EXHALATION; IMAGES; INHALATION; LUNGS; PATIENTS; RADIOTHERAPY; RESPIRATION; SIMULATION; TIME RESOLUTION

Citation Formats

Li, G, Tyagi, N, Deasy, J, Wei, J, and Hunt, M. SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI. United States: N. p., 2015. Web. doi:10.1118/1.4924324.
Li, G, Tyagi, N, Deasy, J, Wei, J, & Hunt, M. SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI. United States. doi:10.1118/1.4924324.
Li, G, Tyagi, N, Deasy, J, Wei, J, and Hunt, M. Mon . "SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI". United States. doi:10.1118/1.4924324.
@article{osti_22499340,
title = {SU-E-J-238: First-Order Approximation of Time-Resolved 4DMRI From Cine 2DMRI and Respiratory-Correlated 4DMRI},
author = {Li, G and Tyagi, N and Deasy, J and Wei, J and Hunt, M},
abstractNote = {Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated from reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lung volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for improvements. This study is in part supported by NIH (U54CA137788 and U54CA132378)},
doi = {10.1118/1.4924324},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: The aim of this study is to develop the abdominal compression device which could control pressure level according to the abdominal respiratory motion and evaluate its feasibility. Methods: In this study, we focused on developing the abdominal compression device which could control pressure level at any point of time so the developed device is possible to use a variety of purpose (gating technique or respiratory training system) while maintaining the merit of the existing commercial device. The compression device (air pad form) was designed to be able to compress the front and side of abdomen and the pressure levelmore » of the abdomen is controlled by air flow. Pressure level of abdomen (air flow) was determined using correlation data between external abdominal motion and respiratory volume signal measured by spirometer. In order to verify the feasibility of the device, it was necessary to confirm the correlation between the abdominal respiratory motion and respiratory volume signal and cooperation with respiratory training system also checked. Results: In the previous study, we could find that the correlation coefficient ratio between diaphragm and respiratory volume signal measured by spirometer was 0.95. In this study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion measured by belt-transducer (correlation coefficient ratio was 0.92) and used the correlated respiratory volume data as an abdominal pressure level. It was possible to control the pressure level with negligible time delay and respiratory volume data based guiding waveforms could be properly inserted into the respiratory training system. Conclusion: Through this feasibility study, we confirmed the correlation between the respiratory volume signal and the external abdominal motion. Also initial assessment of the device and its compatibility with the respiratory training system were verified. Further study on application in respiratory gated therapy and respiratory training system will be investigated. This work was supported by Radiation Technology R and D program (No. 2013M2A2A7043498)and Basic Atomic Energy Research Institute (BAERI)(No. NRF-2009-0078390) through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning.« less
  • Purpose: Respiratory Correlated CT (RCCT) scans to assess intra-fraction motion among pancreatic cancer patients undergoing radiotherapy allow for dose sparing of normal tissues, in particular for the duodenum. Contour propagation of the gross tumor volume (GTV) from one reference respiratory phase to 9 other phases is time consuming. Deformable image registration (DIR) has been successfully used for high contrast disease sites but lower contrast for pancreatic tumors may compromise accuracy. This study evaluates the accuracy of Fast Free Form (FFF) registration-based contour propagation of the GTV on RCCT scans of pancreas cancer patients. Methods: Twenty-four pancreatic cancer patients were retrospectivelymore » studied; 20 had tumors in the pancreatic head/neck, 4 in the body/tail. Patients were simulated with RCCT and images were sorted into 10 respiratory phases. A radiation oncologist manually delineated the GTV for 5 phases (0%, 30%, 50%, 70% and 90%). The FFF algorithm was used to map deformations between the EE (50%) phase and each of the other 4 phases. The resultant deformation fields served to propagate GTV contours from EE to the other phases. The Dice Similarity Coefficient (DSC), which measures agreement between the DIR-propagated and manually-delineated GTVs, was used to quantitatively examine DIR accuracy. Results: Average DSC over all scans and patients is 0.82 and standard deviation is 0.09 (DSC range 0.97–0.57). For GTV volumes above and below the median volume of 20.2 cc, a Wilcoxon rank-sum test shows significantly different DSC (p=0.0000002). For the GTVs above the median volume, average +/− SD is 0.85 +/− 0.07; and for the GTVs below, the average +/− SD is 0.75 +/−0.08. Conclusion: For pancreatic tumors, the FFF DIR algorithm accurately propagated the GTV between the images in different phases of RCCT, with improved performance for larger tumors.« less
  • Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lungmore » were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number R25GM109439.« less
  • Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantommore » moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the accuracy of auto-tracking. This work is supported in part by the Varian Medical Systems, Inc.« less
  • Purpose: To investigate the accuracy of 4D-MRI in determining the Internal Target Volume (ITV) used in radiation oncology treatment planning of liver cancers. Cine MRI is used as the standard baseline in establishing the feasibility and accuracy of 4D-MRI tumor motion within the liver. Methods: IRB approval was obtained for this retrospective study. Analysis was performed on MR images from four patients receiving external beam radiation therapy for liver cancer at our institution. Eligible patients received both Cine and 4D-MRI scans before treatment. Cine images were acquired sagittally in real time at a slice bisecting the tumor, while 4D imagesmore » were acquired volumetrically. Cine MR DICOM headers were manipulated such that each respiratory frame was assigned a unique slice location. This approach permitted the treatment planning system (Eclipse, Varian Medical Systems) to recognize a complete respiratory cycle as a “volume”, where the gross tumor was contoured temporally. Software was developed to calculate the union of all frame contours in the structure set, resulting in the corresponding plane of the ITV projecting through the middle of the tumor, defined as the Internal Target Area (ITA). This was repeated for 4D-MRI, at the corresponding slice location, allowing a direct comparison of ITAs obtained from each modality. Results: Four patients have been analyzed. ITAs contoured from 4D-MRI correlate with contours from Cine MRI. The mean error of 4D values relative to Cine values is 7.67 +/− 2.55 %. No single ITA contoured from 4D-MRI demonstrated more than 10.5 % error compared to its Cine MRI counterpart. Conclusion: Motion management is a significant aspect of treatment planning within dynamic environments such as the liver, where diaphragmatic and cardiac activity influence plan accuracy. This small pilot study suggests that 4D-MRI based ITA measurements agree with Cine MRI based measurements, an important step towards clinical implementation. NIH 1R21CA165384-01A1.« less