skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of ZnO:TiO{sub 2} nano composites thin films deposited on glass substrate by sol-gel spray coating technique

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4938320· OSTI ID:22494466
; ; ;  [1];  [2]
  1. Department of Physics, Faculty of Natural Sciences and Mathematics, Diponegoro University (Indonesia)
  2. Department of Chemical Engineering, Faculty of Engineering, Diponegoro University (Indonesia)

In this work, (ZnO){sub x}:(TiO{sub 2}){sub 1-x} nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol–gel spray coating technique onto glass substrate. Pure TiO{sub 2} and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO{sub 2} and ZnO:TiO{sub 2} thin films at different composition have been investigated. Ultraviolet – Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO{sub 2} on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

OSTI ID:
22494466
Journal Information:
AIP Conference Proceedings, Vol. 1699, Issue 1; Conference: International conference of chemical and material engineering (ICCME) 2015: Green technology for sustainable chemical products and processes, Semarang (Indonesia), 29-30 Sep 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English