skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging

Abstract

Purpose: To evaluate prostate volume changes during radiation therapy using implanted gold markers and on-board imaging. Methods: Twenty-five patients were included who underwent an implantation of three gold markers. Cartesian coordinates of markers were assessed in kV-images. The coordinates of centers of two markers were measured on kV-images from the center of the marker at the apex which was reference. The distances between the markers were extrapolated from the coordinates using the Euclid formula. The radius of the sphere through markers was calculated using sinus theorem. The prostate volume for the first and last fraction was substituted with a sphere model and was calculated for each patient. The t-test was used for analysis. Results: The mean prostate volume for first and last fraction was 24.65 and 20.87 cc, respectively (p≤0.05). The prostate volume was smaller for 23 patients, whereas there was an expansion for 2 patients. Fifteen patients had androgen deprivation during radiotherapy (H group) and ten did not (NH group). The mean prostate volume for the first and last fraction for the NH group was 30.73 cc and 24.89 cc and for the H group 20.84 cc and 18.19 cc, respectively. There was a 15.8% volume change during treatmentmore » for the NH group and 12.2% for the H group, but the difference was not statistically significant. The radius difference of the theoretical sphere for the first and last fraction was 0.98 mm (range, 0.09–2.95 mm) and remained below 2 mm in 88% of measurements. Conclusion: There was a significant volume change during prostate radiotherapy. The difference between H group and NH group was not significant. The radius changes did not exceed 3 mm and it was below adaptive treatment requirements. Our results indicate that prostate volume changes during treatment should be taken into account during contouring and treatment planning.« less

Authors:
;  [1]; ; ; ;  [2]
  1. Acibadem Adana Hospital, Adana (Turkey)
  2. Acibadem Universty Faculty of Medicine, Adana (Turkey)
Publication Date:
OSTI Identifier:
22494098
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANDROGENS; BIOMEDICAL RADIOGRAPHY; IMAGES; PATIENTS; PROSTATE; RADIOTHERAPY

Citation Formats

Ispir, B, Akdeniz, Y, Ugurluer, G, Eken, A, Arpaci, T, and Serin, M. SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging. United States: N. p., 2015. Web. doi:10.1118/1.4924166.
Ispir, B, Akdeniz, Y, Ugurluer, G, Eken, A, Arpaci, T, & Serin, M. SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging. United States. doi:10.1118/1.4924166.
Ispir, B, Akdeniz, Y, Ugurluer, G, Eken, A, Arpaci, T, and Serin, M. Mon . "SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging". United States. doi:10.1118/1.4924166.
@article{osti_22494098,
title = {SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging},
author = {Ispir, B and Akdeniz, Y and Ugurluer, G and Eken, A and Arpaci, T and Serin, M},
abstractNote = {Purpose: To evaluate prostate volume changes during radiation therapy using implanted gold markers and on-board imaging. Methods: Twenty-five patients were included who underwent an implantation of three gold markers. Cartesian coordinates of markers were assessed in kV-images. The coordinates of centers of two markers were measured on kV-images from the center of the marker at the apex which was reference. The distances between the markers were extrapolated from the coordinates using the Euclid formula. The radius of the sphere through markers was calculated using sinus theorem. The prostate volume for the first and last fraction was substituted with a sphere model and was calculated for each patient. The t-test was used for analysis. Results: The mean prostate volume for first and last fraction was 24.65 and 20.87 cc, respectively (p≤0.05). The prostate volume was smaller for 23 patients, whereas there was an expansion for 2 patients. Fifteen patients had androgen deprivation during radiotherapy (H group) and ten did not (NH group). The mean prostate volume for the first and last fraction for the NH group was 30.73 cc and 24.89 cc and for the H group 20.84 cc and 18.19 cc, respectively. There was a 15.8% volume change during treatment for the NH group and 12.2% for the H group, but the difference was not statistically significant. The radius difference of the theoretical sphere for the first and last fraction was 0.98 mm (range, 0.09–2.95 mm) and remained below 2 mm in 88% of measurements. Conclusion: There was a significant volume change during prostate radiotherapy. The difference between H group and NH group was not significant. The radius changes did not exceed 3 mm and it was below adaptive treatment requirements. Our results indicate that prostate volume changes during treatment should be taken into account during contouring and treatment planning.},
doi = {10.1118/1.4924166},
journal = {Medical Physics},
number = 6,
volume = 42,
place = {United States},
year = {Mon Jun 15 00:00:00 EDT 2015},
month = {Mon Jun 15 00:00:00 EDT 2015}
}
  • Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes inmore » both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested.« less
  • Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured inmore » the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.« less
  • Purpose: To assess our single institutional experience with daily localization, using fiducials for prostate radiotherapy. Methods and Materials: From January 2004 to September 2005, 33 patients were treated with 1,097 intensity-modulated radiation treatments, using three implanted fiducials. Daily portal images were obtained before treatments. Shifts were made for deviations {>=}3 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) dimensions. Results: Of 1,097 treatments, 987 (90%) required shifts. Shifts were made in the LR, SI, and AP dimensions in 51%, 67%, and 58% of treatments, respectively. In the LR dimension, the median distance shifted was 5 mm. Of 739more » shifts in the SI dimension, 73% were in the superior direction for a median distance of 6 mm, and 27% were shifted inferiorly for a median distance of 5 mm. The majority of shifts in the AP dimension were in the anterior direction (87%). Median distances shifted in the anterior and posterior directions were 5 mm and 4 mm, respectively. The median percentage of treatments requiring shifts per patient was 93% (range, 57-100%). Median deviations in the LR, SI, and AP dimensions were 3 mm, 4 mm, and 3 mm, respectively. Deviations in the SI and AP dimensions were more often in the superior rather than inferior (60% vs. 29%) and in the anterior rather than posterior (70% vs. 16%) directions. Conclusions: Interfraction prostate motion is significant. Daily portal imaging with implanted fiducials improves localization of the prostate, and is necessary for the reduction of treatment margins.« less
  • Purpose: To develop a computerized pharmacokinetic model-free Gross Tumor Volume (GTV) segmentation method based on dynamic contrastenhanced MRI (DCE-MRI) data that can improve physician GTV contouring efficiency. Methods: 12 patients with biopsy-proven early stage breast cancer with post-contrast enhanced DCE-MRI images were analyzed in this study. A fuzzy c-means (FCM) clustering-based method was applied to segment 3D GTV from pre-operative DCE-MRI data. A region of interest (ROI) is selected by a clinician/physicist, and the normalized signal evolution curves were calculated by dividing the signal intensity enhancement value at each voxel by the pre-contrast signal intensity value at the corresponding voxel.more » Three semi-quantitative metrics were analyzed based on normalized signal evolution curves: initial Area Under signal evolution Curve (iAUC), Immediate Enhancement Ratio (IER), and Variance of Enhancement Slope (VES). The FCM algorithm wass applied to partition ROI voxels into GTV voxels and non-GTV voxels by using three analyzed metrics. The partition map for the smaller cluster is then generated and binarized with an automatically calculated threshold. To reduce spurious structures resulting from background, a labeling operation was performed to keep the largest three-dimensional connected component as the identified target. Basic morphological operations including hole-filling and spur removal were useutilized to improve the target smoothness. Each segmented GTV was compared to that drawn by experienced radiation oncologists. An agreement index was proposed to quantify the overlap between the GTVs identified using two approaches and a thershold value of 0.4 is regarded as acceptable. Results: The GTVs identified by the proposed method were overlapped with the ones drawn by radiation oncologists in all cases, and in 10 out of 12 cases, the agreement indices were above the threshold of 0.4. Conclusion: The proposed automatic segmentation method was shown to be promising and might be used to improve physician contouring efficiency. J Horton receives grant from NIH and Varian Medical Systems; F-F Yin receives grant from Varian Medical Systems.« less
  • Purpose: Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and the radiographic MV EPID mode. Methods: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For OBI CBCT, High quality head Full-Fan acquisition and Pelvis Half-Fan acquisition modes were evaluated for Uniformity, Noise,more » Spatial Resolution, HU constancy and geometric distortion. Dose and kVp for the OBI were recorded using the Unfors RaySafe Xi system with the R/F High Detector for planar kV and the CT detector for CBCT. Dose for the MV EPID was recorded using a PTW975 Semiflex Ion Chamber, PTW Unidos electrometer and SolidWater™. Results: For each metric, values were normalized to the mean and the standard deviations were recorded. For the planar radiographic spatial resolution the f30, f40, f50 were 0.015, 0.008, 0.004 and 0.006, 0.009, 0.018 for the kV and MV, respectively. The standard deviation of the dose for kV was 0.010 and 0.005 for the MV. The standard deviations for Full and half fan were averaged together and the following standard deviations for each metric were recorded: 0.075(uniformity), 0.071(noise), 0.006(AP-Geometric Distortion), 0.005(LAT-Geometric Distortion), 0.058(mean slice thickness), 0.098(f30),0.101(f40),0.124(f50), 0.031(Lung/PMP-HU constancy), 0.063(Water/poly-HU constancy), 0.015(Bone/Derlin-HU constancy),0.006(Dose-Center), 0.004(Dose-Periphery). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion: A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Varian OBI and EPID Imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame.« less