skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational investigation on tunable optical band gap in armchair polyacenes

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4928571· OSTI ID:22493517
 [1]
  1. Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246 (India)

Polyacenes in their armchair geometry (phenacenes) have recently been found to possess appealing electronic and optical properties with higher chemical stability and comparatively larger band gap as compared to linear polyacenes. They also behave as high-temperature superconductors upon alkali metal doping. Moreover, the optical properties of crystalline picene can be finely tuned by applying external pressure. We investigated the variation of optical gap as a function of altering the interplanar distances between parallel cofacial phenacene dimers. We employed both time-dependent density functional theory and density matrix renormalization group (DMRG) technique to investigate the lowest singlet excitations in phenacene dimer. Our study showed that the lowest singlet excitation in these systems evolved as a function of interplanar separation. The optical excitation energy gap decreases as a function of inverse interplanar separation of the phenacene dimer. The distant dependent variation of optical absorption at the dimer level may be comparable with experimental observation in picene crystal under pressure. DMRG study also demonstrates that besides picene, electronic properties of higher phenacenes can also be tunable by altering interplanar separation.

OSTI ID:
22493517
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 6; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English