skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Calculation of correlated initial state in the hierarchical equations of motion method using an imaginary time path integral approach

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4935799· OSTI ID:22493246
;  [1]
  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)

Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.

OSTI ID:
22493246
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 19; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English