skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Luminescence enhancement by energy transfer in melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} nanohybrids

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4931678· OSTI ID:22492752
; ; ;  [1]; ;  [2]
  1. Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy)
  2. Departimento di Scienze Chimiche e Geologiche and INSTM, Università d Cagliari, SS 554 bivio Sestu, I-09042 Monserrato (Italy)

The phenomenon of luminescence enhancement was studied in melamine-Y{sub 2}O{sub 3}:Tb hybrids. Terbium doped Y{sub 2}O{sub 3} mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement of {sup 5}D{sub 4}→ F{sub J} Rare Earth emission (at about 542 nm) of about 10{sup 2} fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.

OSTI ID:
22492752
Journal Information:
Journal of Applied Physics, Vol. 118, Issue 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English