skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4926574· OSTI ID:22490900
; ;  [1];  [2]
  1. Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)
  2. Firefly Project, 117593 Moscow (Russian Federation)

1-photon (382 nm) and 2-photon (752 nm) excitations to the S{sub 1} state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S{sub 1} → S{sub n} due to resonant absorption of a third pump photon. Subsequent S{sub n} → S{sub 1} internal conversion (with τ{sub 1} = 1 ps) prepares a very hot S{sub 1} state which cools down with τ{sub 2} = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ{sup (2)} = 32 ⋅ 10{sup −50} cm{sup 4} s at 752 nm are evaluated from the bleach signal.

OSTI ID:
22490900
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English