skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On structural and lattice dynamic stability of LaF{sub 3} under high pressure: A first principle study

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4917603· OSTI ID:22490197
;  [1]
  1. Applied Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ∼19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.

OSTI ID:
22490197
Journal Information:
AIP Conference Proceedings, Vol. 1665, Issue 1; Conference: 59. DAE solid state physics symposium 2014, Tamilnadu (India), 16-20 Dec 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English