Semiclassical Green’s functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit
Journal Article
·
· Journal of Chemical Physics
- Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen (Germany)
We present semiclassical approximations to Green’s functions of multidimensional systems, extending Gutzwiller’s work to the classically forbidden region. Based on steepest-descent integrals over these functions, we derive an instanton method for computing the rate of nonadiabatic reactions, such as electron transfer, in the weak-coupling limit, where Fermi’s golden-rule can be employed. This generalizes Marcus theory to systems for which the environment free-energy curves are not harmonic and where nuclear tunnelling plays a role. The derivation avoids using the Im F method or short-time approximations to real-time correlation functions. A clear physical interpretation of the nuclear tunnelling processes involved in an electron-transfer reaction is thus provided. In Paper II [J. O. Richardson, J. Chem. Phys. 143, 134116 (2015)], we discuss numerical evaluation of the formulae.
- OSTI ID:
- 22489673
- Journal Information:
- Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 13 Vol. 143; ISSN JCPSA6; ISSN 0021-9606
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ring-polymer instanton theory of electron transfer in the nonadiabatic limit
On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution
Derivation of instanton rate theory from first principles
Journal Article
·
Wed Oct 07 00:00:00 EDT 2015
· Journal of Chemical Physics
·
OSTI ID:22489674
On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution
Journal Article
·
Fri Jun 14 00:00:00 EDT 2013
· Journal of Chemical Physics
·
OSTI ID:22118606
Derivation of instanton rate theory from first principles
Journal Article
·
Mon Mar 21 00:00:00 EDT 2016
· Journal of Chemical Physics
·
OSTI ID:22660795