Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Semiclassical Green’s functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4932361· OSTI ID:22489673
;  [1]
  1. Institut für Theoretische Physik und Interdisziplinäres Zentrum für Molekulare Materialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstraße 7/B2, 91058 Erlangen (Germany)
We present semiclassical approximations to Green’s functions of multidimensional systems, extending Gutzwiller’s work to the classically forbidden region. Based on steepest-descent integrals over these functions, we derive an instanton method for computing the rate of nonadiabatic reactions, such as electron transfer, in the weak-coupling limit, where Fermi’s golden-rule can be employed. This generalizes Marcus theory to systems for which the environment free-energy curves are not harmonic and where nuclear tunnelling plays a role. The derivation avoids using the Im F method or short-time approximations to real-time correlation functions. A clear physical interpretation of the nuclear tunnelling processes involved in an electron-transfer reaction is thus provided. In Paper II [J. O. Richardson, J. Chem. Phys. 143, 134116 (2015)], we discuss numerical evaluation of the formulae.
OSTI ID:
22489673
Journal Information:
Journal of Chemical Physics, Journal Name: Journal of Chemical Physics Journal Issue: 13 Vol. 143; ISSN JCPSA6; ISSN 0021-9606
Country of Publication:
United States
Language:
English

Similar Records

Ring-polymer instanton theory of electron transfer in the nonadiabatic limit
Journal Article · Wed Oct 07 00:00:00 EDT 2015 · Journal of Chemical Physics · OSTI ID:22489674

On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution
Journal Article · Fri Jun 14 00:00:00 EDT 2013 · Journal of Chemical Physics · OSTI ID:22118606

Derivation of instanton rate theory from first principles
Journal Article · Mon Mar 21 00:00:00 EDT 2016 · Journal of Chemical Physics · OSTI ID:22660795